Learn Java for FTC

Alan G. Smith

August 11, 2020

Cover Photo Credit: Nastassia Bas on 123rf.com
All Rights Reserved.

FIRST Tech Challenge, and FTC are registered trademarks of For Inspi-
ration and Recognition of Science and Technology (FIRST) which does not
sponsor, authorize, or endorse this book.

REV, REV Control Hub, REV Expansion Hub, and Rev Robotics are trademarks
of Rev Robotics which does not sponsor, authorize, or endorse this book.

Learn Java for FTC
Copyright © 2020 Alan G. Smith. All Rights Reserved.

The author can be contacted at: alanerandomsmiths.com

The hardcopy of the book can be purchased from Amazon at
https://www.amazon.com/dp/BOS8DBVKXLZ

The most recent PDF is free at https://github.com/alan412/LearndavaForFTC

ISBN: 9798644009886

https://www.123rf.com/profile_stassi
https://www.amazon.com/dp/B08DBVKXLZ
https://github.com/alan412/LearnJavaForFTC

This book is dedicated to:

My wife who after suffering through my first book
encouraged me to write this one.

My FTC team that excites me about teaching

My father who spent many hours with me on the Vic 20,
Commodore 64, and the robotic arm science project.
Without his investment, I wouldn’t be the engineer I am
today.

FTC coaches everywhere that teach their students to think
well and work hard

Whatever you do, work at it with all your heart, as working
for the Lord, not for men.
Colossians 3:23 (NIV 1984)

Contents

1.

Introduction 1
1.1. Hardware e 1
1.1.1. RobotController 1
1.1.2. Programming Board 1
1.1.3. Driver Station 2

1.2, OurfirstOpMode 2
1.2.1. Some terminology 2
1.2.2. WhatisanOpMode? 3
1.2.3. PartsofanOpMode 3
1.2.4. Hello,World 3

1.3. Nowyoutry 6
1.4. Comments e 8
1.5. Sending to the Robot Controller 10
1.6. Gotchas e 10
1.7. Exerciseso e 11
Variables and Data Types 13
2.1. Primitive Data Types 14
2.2, String 15
2.3. SCOPE . . v v o e e e e e e e e e e e 16
2.4. Exercises Lo e 16
Gamepad and basic math 17
3.1. BasicMath. 18
3.2. Other assignment operators 20
3.3. Exercises Lo e 20
Making decisions 21
4.1, IE e 21
4.2. Else o o e 23
4.2.1. Elseif 23

4.3. Combinations e 24
4.4. While 25

Contents

4.5, For e 26
4.6. EXErcises e 27

5. Class Members and Methods 29
5.1. Members e e e e 29
52. ClassMethods. 30
5.2.1. ReturnTypes oo 31

5.2.2. Parameters o oo 31

5.2.3. Special Methods: Constructors. 32

5.2.4. Another special method: toString 33

5.3. Controlling access- Keep your private things private 34
5.4. Creatingyourowneclasses 35
5.5. static L e 40
5.6. Exercises 40

6. Our first hardware 41
6.1. Configurationfile, 41
6.2. Mechanisms e 43
6.3. OpMode 45
6.4. Makingchanges. 46
6.5. Exercises 48

7. Motors 49
7.1. Editing Configuration File 49
7.2. Mechanisms L o e 50
7.3. OpMode 53
7.4. Motoras Sensor. e e e e 53
7.5. Motors and Sensors together 56
7.6. Motorsand Gamepadso e 57
7.7. EXercises 59

8. Servos 61
8.1. ConfigurationFile. 61
8.2. Mechanisms L 61
8.3. OpMode e e 63
8.4. Exerciseso e 64

9. Analog Sensors 65
9.1. ConfigurationFile., 65
9.2. Mechanisms L 65
9.3. OpMode e e e 67

10.

11.

12.

13.

14.

15.

16.

17.

9.4. Exercises
Color and Distance Sensors
10.1. ConfigurationFile.

10.2. Mechanisms
10.3. OpMode
10.4. Exercises

Gyro (IMU)
11.1. Configuration File
11.2. Mechanisms
11.3. OpMode
11.4. Exercises

Dealing with State

12.1. A simple example

12.2. Autonomous state - Example
12.2.1. Using the switch statement
12.2.2. Switch with strings
12.2.3. Enumerated types

12.3. It’s all relative

12.4. Exercises

Arrays
13.1. ArrayList
13.1.1. Making your own generic class
13.2. Exercises

Inheritance
14.1. Isavs. hasa
14.2. So why in the world would you use this?
14.3. Exercises

Javadoc
15.1. Exercises

Finding things in FTC SDK
16.1. Exercise

A few other topics
17.1. Make telemetry prettier

Contents

Contents

17.2. Mathclass e 118
17.3. Interfaces (implements) 120
17.3.1. When to use an interface instead of an abstract class? . 120

17.4. final e 121
17.5. EXEercises i i e e e e 121

A. Making your own Programming Board 123
B. LinearOpMode 125
B.1. Whatisit? e 125
B.2. Shouldyouwuseit? 126
B.2.1. Benefits of LinearOpMode 126

B.2.2. Drawbacks of LinearOpMode 127

C. Sample Solutions 129
C.1. Chapter 1 Solutions 129
C.2. Chapter 2 Solutions 130
C.3. Chapter 3 Solutions 131
C.4. Chapter4 Solutions, 133
C.5. Chapter 5Solutions 134
C.6. Chapter 6 Solutions 140
C.7. Chapter 7 Solutions 142
C.8. Chapter 8 Solutions 144
C.9. Chapter9 Solutions 146
C.10. Chapter 10 Solutions L0 L. 147
C.11. Chapter 11 Solutions 150
C.12. Chapter 12 Solutions 0oL 152
C.13. Chapter 13 Solutions 155
C.14. Chapter 14 Solutions oo 157
C.15. Chapter 15 Solutions 166
C.16. Chapter 16 Solutions 170
C.17. Chapter 17 Solutions 171

D. Credits 173

viii

1. Introduction

In coaching an FTC team!, I found that students wanted to be effective coders
but had trouble figuring out where to start. When they took online courses,
they ended up learning a lot of things that weren’'t helpful for FTC (or even
usable). In addition, many of the online sources and even books teach bad
habits. I started this as some slides for my team, but decided it would be
better as a book that could be shared widely.

You'll notice that throughout the book some words are written in a different
font like this. That means that it is code that needs to be exactly like that
(capitalization, etc)

1.1. Hardware

1.1.1. Robot Controller

The Robot Controller, often abbreviated “RC”, is the “brains” of your robot. It
is what our programs run on. The RC can be either an Android phone or a
REV Control Hub. When using an Android phone, it is connected to a REV
Expansion Hub over USB. The REV Expansion Hub is what all motors, servos,
and sensors connect to. A Rev Control Hub is new for the 2020-2021 FTC
Season and is basically an Android phone and Expansion Hub in the same
package instead of having them separate.

1.1.2. Programming Board

For this book, instead of a full robot we have made a simple Programming Board
(just the electrical components that we are using) that we can use throughout
the book so that we all have the same hardware. For directions on how to make
your own, see Appendix A.

1Go Quantum Quacks - FTC #16072

1. Introduction

1.1.3. Driver Station

__— Showing connected gamepads
Bl — Threedots to configure

~ Network connected to

Name of this device — (Team Number - letter - RC)

(TeamNumber - letter - DS) e

Battery power of this phone =~ " Howlongittakesto

communicate to robot. Should

Robot Configuration ~ be small.
ey "~ Power coming into REV
Battery power of RC phone /’/ \\ Expansion Hub. Fresh battery
Pressheretoselectan AN should be above 12V

autonomous OpMode
Press here to select a TeleOp

This changes from INIT to N\ OpMode

abig PLAY symbol toa
STOP symbol

This is where all telemetry &gfa
sent from robot is displayed

\\ A timer so you can see how much
Ny
time your autonomous takes

N OpMode selected

The Driver Station, often abbreviated “DS”, is an Android Phone with 1 or
2 USB gamepads connected that are used during the game to drive the robot.
Above is an example driver station with descriptions for everything on it. This
changes slightly from year to year.

1.2. Our first OpMode

1.2.1. Some terminology

A little terminology before we get started.

class In Java all code is grouped together in classes. We'll discuss exactly what
classes are later in chapter 5. For now, just know that a class groups like
code together and in Java, each class is in its own file that is named the
same as the class with . java at the end.

method A method is a group of code within a class. Methods are the smallest
group of code that can be executed. It is like a function in some languages
or a MyBlock in EV3-G. We'll talk more about this later in section 5.2.

package A directory in JAVA. It is where the code is located. Files in the same
package have special privileges with each other. We’'ll talk about this in
section 5.3. And yes, a package can have packages within it.

1.2. Our first OpMode

1.2.2. What is an OpMode?

In FTC, An OpMode? is a program for our robot. We can have multiple Op-
Modes. They are all stored in the TeamCode package.

1.2.3. Parts of an OpMode

OpModes are required to have two methods:

1. init() - This is run once when the driver presses
INIT.

OpMode selected

INIT pressed

2. loop()- This is run repeatedly after driver presses
PLAY but before STOP.

In addition, there are three optional methods. These
are less common but can be very useful.

_ -
- v, ~50x
N \mlt_loorf) -« asecond

1. init_loop() - This is run repeatedly after driver -
presses INIT but before PLAY. XSTART pressd

-~ ~

(sart()
R 0,

2. start() - This is run once when the driver presses -\

PIAY @” a;ggé(nd

3. stop()- This is run once when the driver presses gopprﬁ/
STOP. -~

{ _siop))

If you look over on the right, you’'ll see a diagram that
explains roughly how it works. The solid ovals are re-
quired and the dashed ones are optional. After stop()is

executed it goes back to the top.
I know this seems strange, but I promise it will make more sense as we

continue.

1.2.4. Hello, World

Traditionally, the first program written in every programming language simply
writes “Hello, World!” to the screen. But instead of writing to the robot’s screen,
we’ll write to the screen on the Driver Station. (Throughout this book we will
show the program in its entirety first, and then explain it afterwards. So if you

2You will likely run across LinearOpMode as many teams use it. There is a discussion in
Appendix B for why we don’t use it but it is probably best left for the end.

© 0 N O gk W N =

T e
N o aobks W N~ O

W N =

1. Introduction

see something that doesn’t make sense, keep reading and hopefully it will be
cleared up.)

Listing 1.1: Helloworld. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class HelloWorld extends OpMode {
@Override
public void init() {
telemetry.addData("Hello", "World");

@Override
public void loop() {

Here is a breakdown of what this program does.

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

If you are working in Android Studio, you won’t have to enter any of these
lines as it will add them for you. Line 1 basically says where this file is located.
3 and 4 bring in code from the FTC SDK (Software Development Kit) so we can
use them.

@TeleOp()

This is CRITICAL. If you forget this line, it won’t show up on the Driver-
Station as an OpMode to select from. Any line that starts with an e is called
an Annotation. You can choose from eTeleop() Or @Autonomous(). You can op-
tionally give it a name and a group, but if you leave those off then it will use
your class name as the name. This works well enough, so we’ll typically leave
those pieces out. Another annotation that you’ll see commonly is eDisabled If
you have that, then your code will compile but it won’t be shown in the list of

17

10
11

1.2. Our first OpMode

OpModes.3

public class HelloWorld extends OpMode {

public - means others can see it. Required for OpModes. We'll discuss this
more in section 5.3.

class - means we are defining a class

Helloworld - this is the name of the class. It must be the same as the filename
(except the filename has .java on it). By convention, it should be started with
a capital letter and each new word is a capital letter (Pascal case). We'll talk
more about classes in chapter 5.

extends OpMode - This means the class is a child of OpMode . A child gets all
of the behavior of its parent and then can add (or replace) functionality. We’ll
talk about what this means in chapter 14.

a class is defined from the opening curly brace “{*“ to the closing curly brace

“} ”

@Override

public void init() {
telemetry.addData("Hello", "World");

3

eoverride tells the compiler that we are meaning to override (replace) func-
tionality in our parent class. We'll talk more about this in chapter 14.

public means this method is callable from outside the class. We'll discuss
this more in section 5.3

void means it doesn’t return anything. We’ll talk about return types in
subsection 5.2.1

init is the name of a method. We'll talk more about methods in section 5.2

Inside of the parenthesis are any parameters passed in or none. (as in this
case) We'll talk about parameters in subsection 5.2.2

The method is defined from the opening curly brace “{“ to the closing curly
brace “}”

telemetry.addData(caption, value); This is very cool because it sends data
to the driver station which lets us debug problems. In this case we sent back
a string (a group of characters - we’ll talk about strings in section 2.2), but
you can also send back numbers or variables. You’ll notice that this ends in a

30ur team often does that for test code that we don’t want to distract us during a tournament
but is VERY helpful to have where we can make it available quickly.

13
14
15
16

1. Introduction

“ 9

semi-colon “;” All statements in JAVA either end with a semi-colon or have a
set of curly braces attached.

@Override
public void loop() {

}

This looks much the same as our init() method, but there is no code in the
loop () method, so the program won’t do anything here. (We included it because
it is required.)

1.3. Now you try

Before you do this, you need to have your phones ready to go and Android
Studio installed with a copy of the FTC SDK. For instructions, see the FTC
document Android Studio Guide®*.

You'll learn the best here if you type in the examples (and you’ll get faster
at Android Studio). While this may seem like it slows you down, it helps you
learn faster. This is the only time in the book I'll mention “Now you try”. For
the rest, I suggest you type it in AFTER we have explained what it does and
then try it. To start with, change the project area to show “Android” (by using
the dropdown). If you are wondering why your Android Studio is white colored

while mine is Dark, that is because I use the built-in theme “Darcula”.®

§ & Android v

°
9_“_ »> [FticRobotController

m 7 I TeamCode

> B manifests New > Java Class
5 ¥ M java _ _ _ iz Kotlin File/Class
g v Otg_firstinsp[res_ Link C++ Project with Gradle & Android Resource File
& readme.md X Cut 38X B Android Resource Directory

1. Right click on org.firstinspires.ftc.teamcode under TeamCode

2. Select New > Java Class

*https:// www firstinspires.org/sites/default/files /uploads/resource_library/ftc/android-
studio-guide.pdf

5To change your theme click File > Settings from the menu bar (or Android Studio > Preferences
on macOS). Go to Appearance under Appearance and Behavior, and you'll see Theme.

1.3. Now you try

HelloWorld

Class

Interface
Enum
Annotation

Singleton

3. (If you are using Android Studio 4.x, it will look like this....)
a) Fill in the name as HelloWorld
b) Press “OK”

c) If you get another dialog box with a bunch of blanks, leave them
blank and press “OK”

d) You'll get a listing that will look like this

package org.firstinspires.ftc.teamcode;

public class HelloWorld {
}

New Java Class
Name: HelloWorld
Kind: Class
Superclass: | OpMode]|

Interface(s Maager
Managerimpl
ManagerNotifier
Visibility: (Meta
Modifiers: MetaAndClass
MetaAndInstance
Notifications
Register
Registrar
eRegistrarMethodManager

Package:

Cancel

4. (If you are using Android Studio 3.x, it will look like this...)
a) Fill in the name as HelloWorld

b) Fill in the Superclass as OpMode. (We'll explain what this means in
chapter 14) As you type it in, it will show you the matches. When you
select it, it will fill in as com.qualcomm.robotcore.eventloop.opmode

1. Introduction

c) Press “OK”. You'll get a file that will be like this:

package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

public class HelloWorld extends OpMode {
¥

d) It will have a red squiggle line under the class declaration. That is
because you haven’t implemented the two required methods yet. You
haven’t done anything wrong.

Make yours look like the HelloWorld.java file in Listing 1.1 earlier. (You can
start at line 6 and you’ll watch it make the import statements as you type)

As you start typing, you’ll notice that Android Studio is giving suggestions.
You can either click on the one you want, or when it is at the top of the list
then press tab.

This is the same pattern you’ll follow for all OpModes in this book.

1.4. Comments

So far our programs have been only for the computer. But it turns out that
you can put things in them that are only for the human readers. You can (and
should) add comments to the program which the computer ignores and are for
human readers only. Comments should explain things that are not obvious
from the code such as why something is being done. In general, comments
should explain why and not what. Please don’t just put in a comment that
repeats the code.
Java supports two forms of comments:

1. A single line comment. It starts with a // and tells the computer to ignore
the rest of the line.

// This is a comment

2. The block comment style. It starts with a /* and continues until a */ is
encountered. This can cross multiple lines. Below are three examples.

© ® N o g ok W N =

L S T S S O S Sy
N~ O © ® N O O k& W N~ O

1.4. Comments

/* This is also a comment */

/* So is this */

/*
* And
* this

as
*well */

In addition, there is a subset of this type of comment called a javadoc that we’ll
talk about in chapter 15. This starts on a line with a /** and then goes until
it sees */. This is used for automatically creating documentation from your
comments.

/*;l-
* This is a javadoc comment
*/

Here is what it looks like with comments added.

Listing 1.2: HelloworldCommented. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class HelloWorldCommented extends OpMode {
yar
*/
@Override
public void init() {
// this sends to the driver station
telemetry.addData("Hello", "World");

This is called when the driver presses INIT

/* *
*/
@Override
public void loop() {
// intentionally left blank

This is called repeatedly while OpMode is playing

23
24

1. Introduction

1.5. Sending to the Robot Controller

1. Make sure your phones are setup as it describes in the FTC document
Configuring Your Android Devices ® and that they can see each other.

2. Connect the Robot Controller to the computer.

3. Press the green play arrow next to the name of the device on the top
toolbar.

4. Wait until you hear the sound from the Robot Controller and the Driver
Station.

5. Now press the right arrow on the driver station to see the list of TeleOp
OpModes. (The arrow on the left shows the list of Autonomous OpModes)

6. Select HelloWorld, and then press the big INIT button.

7. You should see “Hello: World” in the area where the Telemetry data is
reported.

1.6. Gotchas

If your program won’t compile (or it doesn’t do what you expect), here are a few
things to check that often confuse people:

e Java is case sensitive. In other words, myvar is different than mMyvar

* Whitespace (spaces, tabs, blank lines) is all collapsed to the equivalent of
a single space. It is for the human reader only.

Blocks of code are encapsulated with curly braces '{> and ’}°

¢ Every open parenthesis ’ (* must have a matching close parenthesis)’

’

¢ Each program statement needs to end with a semicolon ’;’. In general,
this means that each line of your program will have a semicolon. Excep-
tions are:

6https: //github.com/ftctechnh/ftc_app/wiki/Configuring-Your-Android-Devices

10

1.7. EXxercises

— Semicolons are not used when a code block follows - for example the
class or method declarations we have seen so far

— Semicolons (like everything) are ignored in comments

— Semicolons are not used after the end curly brace. '}’

1.7. Exercises

After you have done the exercise, send it to the robot controller to make sure it

works.

There are sample solutions in Appendix C. However, you should struggle
with them first and only look there when you are stuck. If you end up looking
there, you should make up another exercise for yourself.

1. Change the code so that instead of saying “Hello: World” it says Hello and
then your name.

2. Change the OpMode so it shows up in the Autonomous section of the
Driver Station instead of the Teleop section.

11

2. Variables and Data Types

A variable is a named location in memory where we can store information.
While we don’t have to, by convention we name variables starting with a lower
case letter and then every word after that starts with a capital letter.! For ex-
ample: motorSpeed or gyroHeading. In Java, we specify what type of information
we are storing. Primitive datatypes are types that are built-in to Java.

We must declare a variable before we can use it. Declaring a variable requires
that we specify the type and name. It is always followed by a ;(semi-colon).

// datatype name

int teamNumber;

double motorSpeed;

boolean touchSensorPressed;

The above variable types are int, double, and boolean (These are the three
you’ll use most often in FTC). We'll discuss these and the other primitive
datatypes in the next section.

In Java, if you don’t assign a value to a variable when you create it then it
starts out being equal to O. (or false for boolean)

To assign a value to a variable, you use the = operator like this:

teamNumber = 16072;
motorSpeed = 0.5;
touchSensorPressed = true;

You can assign a value to a variable multiple times and it will be equal to
what you assigned it to most recently.

It's common to declare a variable and assign the value in one line!

For example, to assign 0.5 to a variable named motorSpeed of type double,
we write:

double motorSpeed = 0.5;

This is called camelCase because the upper case letters look like humps.

13

© 0 N O g ok W N =

e e
E R CEE N o)

2. Variables and Data Types

2.1. Primitive Data Types

There are 8 primitive data types in Java:

1. byte - from the range -128 to 127
char - for holding a single unicode character
short - a smaller integer (almost never used in FTC)

int - this is short for integer. It is for numbers with no decimal.?

ok N

long - this is a larger integer. You can use it when you are concerned
about running out of room in an int.3

6. float - this is for floating point numbers. It is smaller than a double so we
typically convert to a double.

7. double - this is for floating point numbers. It can hold numbers with
decimals.*

8. boolean - this can be either true or false. (Yes, it contains one or the other
of these values.)

In the code below, there are examples of the three most typical primitive types
for FTC.

Listing 2.1: primitiveTypes. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class PrimitiveTypes extends OpMode {
@Override
public void init() {
int teamNumber = 16072;
double motorSpeed = 0.5;
boolean touchSensorPressed = true;

telemetry.addData("Team Number", teamNumber);

2It is also limited in the range from +2,147,483,647 to -2,147,483,648
5It is limited in the range from +9,223,372,036,854,775,807 to -9,223,372,036,854,775,808
“while technically it is limited, it is so large you can think of it as unlimited

14

15
16
17
18
19
20
21
22
23

10
11
12

14
15
16

—

o gk W N

2.2. String

telemetry.addData("Motor Speed", motorSpeed);
telemetry.addData("Touch Sensor", touchSensorPressed);

@Override
public void loop() {

In the three lines below you’ll see them defined. Notice how they all follow
the same pattern:

int teamNumber = 16072;
double motorSpeed = 0.5;
boolean touchSensorPressed = true;

They are sent to the driver station using telemetry.addpata. Again, you’ll
notice that they all follow the same pattern.

telemetry.addData("Team Number", teamNumber);
telemetry.addData("Motor Speed", motorSpeed);
telemetry.addData("Touch Sensor", touchSensorPressed);

2.2. String

A string is for holding text. You might be wondering why it is capitalized when
all of the other data types we have seen so far aren’t. This is because string
is really a class. By convention, class names start with a Capital letter and
then every other word is also capitalized. 5 We’ll talk more about classes in
chapter 5.

In the code below, there is an example of using a string data type.

Listing 2.2: useString. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

5This is called PascalCase because it was popularized by one of the lead designers of Turbo
Pascal.

15

10
11
12
13
14
15
16
17
18
19

2. Variables and Data Types

public class UseString extends OpMode {
@Override
public void init() {
String myName = "Alan Smith";

telemetry.addData("Hello", myName);
}

@Override
public void loop() {

}

You'll notice that the pattern here is similar with datatype variableName; Or

datatype variableName = initialValue;

2.3. Scope

This may seem unimportant, but you'll see why it matters later. A variable is
only usable within its scope. Its scope is from where it is declared until the end
of the block it is defined within. A block is defined as any set of open and close
curly braces. { }

A simple example:

public void loop(){
int x = 5;
// x is visible here
{
int y = 4;
// x and y are visible here

}

// only x is visible here

2.4. Exercises

1. Change the string to have your name instead of mine in the code in
section 2.2

2. Add a variable of type int that is called grade that has your grade in it.
Use telemetry to send that to the driver station.

16

3. Gamepad and basic math

We can access the gamepads connected to the driver station from our OpMode.
They are of the Gamepad class. We'll talk more about classes in chapter 5.
Since there are two of them, they are called gamepad1 and gamepad2.! The but-
tons on the gamepad are all boolean (true if they are pressed, false if they
aren’t). The d-pad is exposed as four buttons.? The joysticks are double with
values between -1.0 and 1.0 (0.0 means in the center). There is one for each x
(side to side) and one for each y (up and down). The x is negative to the left and
positive to the right. For strange reasons, up is negative and down is positive.
The left trigger and right trigger are also double with values between 0.0 and
1.0 (0.0 means not pressed, 1.0 means fully pressed). To get to these we use
variableName.memberName Below, we show what the memberNames are for all of
the parts of the gamepad. In the image below, the ones that are bolded are
double (Sometimes we call these analog and the ones that are binary - digital)

left_trigger right_trigger right_bumper
left bumper -

start
back

dpad_down i
dpad_left
dpad_right a
dpad_up

left stick x right stick x

left stick y right stick y

leEtZStick_button {press in) right_stick button (press in)

In the code below is an example of reading the Gamepad. The reason it is
in loop() is because we want to update the telemetry as the gamepad changes.
You’'ll remember that loop is called over and over again (approximately 50 times
a second)

Listing 3.1: GamepadOpMode. java

You might be wondering where these are declared. We'll talk about that in chapter 14
2Technically you can pull out the analog but that is a lot of work and not typically done.

17

© 0 N O Uk W N =

e e e e v
® N O Uk W N = O

3. Gamepad and basic math

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class GamepadOpMode extends OpMode {
@Override
public void init() {
}

@Override

public void loop() {
telemetry.addData("Left stick x", gamepadl.left_stick_x);
telemetry.addData("Left stick y", gamepadl.left_stick_y);
telemetry.addData("A button", gamepadl.a);

You have to press the “Start” and “A” simultaneously
on a gamepad to get the driver station to recognize
:: gamepadl (and “Start” and “B” for gamepad?2). Once
= the gamepad has been recognized the gamepad icon in
the upper right corner of the DS (Driver Station) will
be illuminated.

3.1. Basic Math

In the last section, we talked about how to read a gamepad. You probably no-
ticed that reading the joystick gave us a number. Once something is a number,
we own it. We can do any kind of math to it to get what we wanted. Below are
some of the most common operators.

18

© 0 N O Uk W N =

e e
a s~ W N = O

3.1. Basic Math

Math Meaning
Operator

= assignment operator

+ addition operator

- subtraction operator AND negative operator (So
saying -x is the same thing as saying (0 - x))

* multiplication operator

/ division operator - be aware that if you are using
integers only the whole part is kept. It is NOT rounded.
For example: 5 / 2 == 2 (== is how we describe two
things are equal. We'll talk about it in section 4.1.)

% modulo operator - This gives the remainder. For
example: 5 % 2 ==

(and) These are parenthesis and they allow you to specify

the order of operations just like in regular math. You
can use these to tell the difference between 3 * (4 +
2) or (3 * 4) + 2 While there is a well defined order of
operations, instead of memorizing that it makes more
sense to use parenthesis to be specific.

Below is an example of how we might set the speed forward we want to go
based off of the joystick. In this case we are limiting our speed from -0.5 to 0.5.
The joystick y-value is negative when you press it up and positive when you
press it down which is backwards of how most people want to drive the robot,
so we “negate” the value here to flip it (so negative is positive and vice versa)

Listing 3.2: MathOpMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class MathOpMode extends OpMode {
@Override
public void init() {
}

@Override

public void loop() {
double speedForward = -gamepadl.left_stick_y / 2.0;
telemetry.addData("Left stick y", gamepadl.left_stick_y);

19

16
17
18

14

16

3. Gamepad and basic math

telemetry.addData("speed Forward", speedForward);

The first thing we do is create a new variable and assign to it from another

variable using math.

double speedForward = -gamepadl.left_stick_y / 2.0;

You'll notice that then we can send that variable directly using telemetry

telemetry.addData("speed Forward", speedForward);

3.2. Other assignment operators

There are some shortcuts where you can combine a math operator and an

assignment operator. Below are some of the most common.

| Operator | Meaning | Example

++ increment x++ means the sameas x = x + 1

- decrement x— means the same asx = x - 1

+= Add and x += 2 means the same as x = x + 2
assignment

*= Multiply and x *= 2 means the same as x = x * 2
assignment

/= divide and x /= 2 means the sameasx = x / 2
assignment

%= modulo and X %= 2 means the same asx = x % 2
assignment

3.3. Exercises

1. Add telemetry to show the right stick of gamepad1.

2. Add telemetry to show whether the b button is pressed on gamepadi

3. Report to the user the difference between the left joystick y and the right

joystick y on gamepadi.

4. Report to the user the sum of the left and right triggers on gamepadi.

20

© 0 N O g ok W N =

L S S
S © ® N O Gk~ W N = O

4. Making decisions

4.1. If

So far our programs have executed all of their code. Control structures allow
you to change which code is executed and even to execute code multiple times.

The if statement is the first control structure we’ll talk about. Here is an
example of a program using it:

Listing 4.1: 1fopMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class IfOpMode extends OpMode {
@Override
public void init() {
3

@Override
public void loop() {
if(gamepadl.left_stick_y < 0){
telemetry.addData("Left stick", " is negative");

telemetry.addData("Left stick y", gamepadl.left_stick_y);

Can you figure out what this is doing?

if clauses start with if(conditionalExpression). They then have either a
single statement or a block of code. A block of code starts with an open curly
brace {, then it has O or more statement, and then a close curly brace }.

The code in the block is only executed if the conditional expression inside the
parenthesis is true.

21

© ® N O g ok W N

—_ =
- O

4. Making decisions

I strongly recommend using a block of code instead of
a single statement. The reason why is that using a
single statement can lead to unexpected errors. For

example:
Nl
_': if(gamepadl.left_stick_y < 0)
- telemetry.addData("Left stick", " is negative");

telemetry.addData("Looks like it is part of the if, but<4>

— it isn’t");

There are several conditional operators that we can use:

| Operator | Meaning

== is equal to

= is not equal to

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to
e A common mistake is trying to test for equality with
?5 the assignment operator = instead of the equality

operator ==.

Not only can we use conditional operators, we can also use a boolean variable
to make the decision. Here is an example:

Listing 4.2: 1fopMode2. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class IfOpMode2 extends OpMode {
@Override
public void init() {
}

22

12
13
14
15
16
17
18

© 0 N O ok W N =

NN N = = e e e e e e e e
@ N = O © ®» N e U ks W N = O

4.2. Else

@Override
public void loop() {
if(gamepadl.a){
telemetry.addData("A Button", "pressed");

4.2. Else

An if statement can have an else clause which handles what should be done
if the if expression is false. That sounds confusing, but here is an example:

Listing 4.3: 1fElseOpMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class IfElseOpMode extends OpMode {
@Override
public void init() {
}

@Ooverride
public void loop() {
if(gamepadl.left_stick_y < 0){

telemetry.addData("Left stick", " is negative");
}
elsef{
telemetry.addData("Left stick", " is positive");
b
telemetry.addData("Left stick y", gamepadl.left_stick_y);
3
}
4.2.1. Else if

Since an else statement can have a single statement OR a block of code we can
chain them together like this:

23

© 0 N O g ok W N =

NN N NN NN N N e e e e e e e e
® N O g A W N = O © 0N O g W Nd = O

4. Making decisions

Listing 4.4: 1fElseIfOpMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class IfElseIfOpMode extends OpMode {
@Override
public void init() {
3

@Override
public void loop() {
if (gamepadl.left_stick_y < -0.5) {

telemetry.addData("Left stick", " is negative and large");
}
else if (gamepadl.left_stick_y < 0){

telemetry.addData("Left stick", " is negative and small");
}
else if (gamepadl.left_stick_y < 0.5){

telemetry.addData("Left stick", " is positive and small");
}
else {

telemetry.addData("Left stick", " is positive and large");
}

telemetry.addData("Left stick y", gamepadl.left_stick_y);

4.3. Combinations

Sometimes you want to test for more than one thing. For example, you may
want to test if a variable is between two numbers. While you can use multiple
if statements, it is often more convenient and readable to use logical combi-
nations. There are four! simple ways that you can combine logical conditions.
(and then you can combine these even further)

ITechnically there are three, but you can use the XOR bitwise operator in a similar manner.
Just be careful to make sure you are operating on boolean expressions and not ones that are
integers or you'll get unexpected results.

24

4.4. While

| Operator | Example ‘ Meaning ‘

&& (A < 10) && (B > 5) logical AND (return true if condition A
AND condition B are true, otherwise
return false.)
| (A < 10) || (B > 5) logical OR (return true if condition A
OR condition B is true, otherwise
return false.)

! 1(A < 10) logical NOT (return true if condition A
is false, otherwise return false.)
A (A < 10) A~ (B > 5) XOR (return true if either A or B is

true but if they both are then return
false). This is used more rarely than
the others but is included for
completeness.

A common mistake is accidentally using the single &
instead of && or using the single | instead of | | The
?3 single versions are for doing binary arithmetic

) operations. That is pretty rare in your Java FTC code
so we won't be talking about it in this book.

One thing that might not be obvious is that you can use these to set a value
for a boolean variable. So for example:

boolean bvar;

bvar = !bVar;

When it is declared, bvar will be false. (Since all boolean variables are ini-
tialized to false by default.) After the line bvar =!bvar it will be equal to true.

4.4. While

A while loop is much like an if statement except for after it is done it goes back
to the beginning and checks the conditional again. What if we had the amount
the robot had turned, but we wanted its heading (between -180 and 180). We
could use code like this:

while(angle > 180){ ‘

25

4. Making decisions

angle -= 360;

3

while(angle < -180){
angle += 360;

}

The reason it takes two while clauses is because one takes care of the case
where we had turned more than 180 degrees in the positive direction, and the
other takes care of the case where we had turned more than 180 degrees in
the negative direction.?

You might be tempted to write code like

while(gamepadl.a) {
\/ // do something
A° }

That code won’t work in an OpMode because
gamepadl is only updated between calls to 1oop()

There is also a do...while loop which executes once regardless and checks
the condition at the end instead of the beginning. This is pretty rare in Java
FTC code but is included here for completeness. A quick example:

do{
// code goes here
a++;

twhile(a < 10)

4.5. For

There are two types of for loops. The traditional type looks like many program-
ming languages, for(start; conditional; update) The start is executed once
before we begin, the conditional is checked every time before we execute, the
end is done at the end of EVERY time through.

for(int i = 0; i < 4; i++){
// This code will happen 4 times
}

2If we were doing this for real, we would do it in radians. But we used degrees here to make
the concept simpler.

26

4.6. Exercises

This is often used, but in many cases it is to go through an array and you
are better off using a for-each that we’ll talk about when we talk about arrays
in chapter 13.

4.6. Exercises

1. Make a “turbo button”. When gamepadi.a is not pressed, multiply the
joystick by 0.5 and when it is pressed multiply by 1 and report to the user
as Forward Speed.

2. Make a “crazy mode”. When gamepad1.a is pressed, report X as Y and Y as
X. When it isn’t pressed, report the joystick as normal....

27

© 0 N O gk W N =

e e e
w N = O

5. Class Members and Methods

A class is a model of something. It can contain data (members) and functions
(methods). Whenever you create a class, it becomes a data type that people can
make variables of that type. You can think of a class like a blueprint that can
be used to make any number of identical things. (called “objects”) For example,
the string data type is a class but we can have multiple objects of type string
in our programs. Remember that we name classes starting with a Capital letter
and then every other word in the class name is also capitalized.!

5.1. Members

So far, we have had variables in our methods but we can also have them belong
to our class. To have them belong to our class, they need to be within the
class body but outside of every method body. By convention, they are at the
beginning of the class but they don’t have to be. If they are in our class, then
every method in our class can use them and when they get changed everyone
sees the new value. However, every object (copy) has its own member variables?

Listing 5.1: classMemberOpMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class ClassMemberOpMode extends OpMode {
boolean initDone;

@Override

public void init() {
telemetry.addData("init Done", initDone);
initDone = true;

'Remember this is called Pascal Case.
2unless they are declared static which means they are shared between all objects of the class.
We'll talk about this in section 5.5.

29

14
15
16
17
18
19
20

© 0 N O Uk W N =

—_ = =
N = O

5. Class Members and Methods

}

@Override
public void loop() {
telemetry.addData("init Done", initDone);

}

Even though initDone gets updated in init (), nothing sends it to the driver
station until 1oop() gets called for the first time.

You can use the this keyword to unambiguously say you are referring to the
class member, but if there isn’t a variable with the same name in your method
then you can leave it off. That would look like this.initDone .

5.2. Class Methods

We can create new methods. A method has a return type (which is any data
type), a name, and can take O or more parameters. A parameter is a way you
can pass information into a method. Each parameter has a data type and a
name. Inside the method, it is just like you had a variable defined inside the
method with that data type and name. (but it received its value from whomever
called the class method.)

By convention we name methods starting with a lowercase letter and then
having each additional word in the name start with an uppercase letter® After
its parameters, there is the method body which goes from the opening curly
bracket { to the close curly bracket }.

Listing 5.2: classMethodOpMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class ClassMethodOpMode extends OpMode {

@Override
public void init() {
}

3Remember this is called camelCase

30

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

5.2. Class Methods

double squareInputWithSign(double input) {
double output = input * input;
if(input < 0){
output = output * -1;
}

return output;

@Override

public void loop() {
double leftAmount = gamepadl.left_stick_x;
double fwdAmount = -gamepadl.left_stick_y;

telemetry.addData("Before X", leftAmount);
telemetry.addData("Before Y", fwdAmount);

leftAmount = squarelInputWithSign(leftAmount) ;
fwdAmount = squareInputWithSign(fwdAmount) ;

telemetry.addData("After X", leftAmount);
telemetry.addData("After Y", fwdAmount);

5.2.1. Return Types

The return type is simply the data type in front of the name. You can also
say that a method doesn’t return anything. In that case, instead of the data
type you put the keyword void before the name. To return the value you use
the return statement. It is simply return <value>; You can return a variable
or a constant (typed in number, string, etc.) You can see this done in the
example above. As soon as the return keyword is executed the method returns
to whomever called it.

If you have a class method that returns void, then you can either have a
return with nothing after it like return; or you can omit the return statement
and it will return at the end of the code.

5.2.2. Parameters

You probably noticed that the name had an open parenthesis (after it. Then
each parameter is listed like a variable (except no default assignment allowed).

31

5. Class Members and Methods

If there is more than one parameter, they are separated by a comma , Then at
the end of the parameters is a close parenthesis)
So some examples of methods:

// returnDataType name(parameters)
double squareInputWithSign(double input) {
double output = input * input;
if(input < 0){
output = output * -1;
}
return output;
}
void setMotorSpeed(double speed) {
motor.set(speed) ;
}
boolean isSensorPressed() {
return touchSensor.isPressed();
}
double min(double x, double y) {
if(x < y){
return x;

}

return y;

The min example may have surprised you because there isn’'t an else. There
isn’t any need because if x < y, then it will return out of the method. So the
only way it will get to the return y; statement is if x >= y . So you could write
it with an else, but that isn’t necessary.

5.2.3. Special Methods: Constructors

A constructor is a special method in a Java class that has the same name
as the class and it has no return type. It gets called whenever the class is
initialized. (created). In Java you can have multiple constructors where each
one has different parameters.

An example:

public class Point{
int x;
int y;

public Point(int x, int y){
this.x = x;

32

5.2. Class Methods

this.y = vy;

In this case, we had to use the this keyword because the class member is
named the same as the parameter. Sometimes people will change the parame-
ter name instead - like this:

public class Point{
int x;
int y;

public Point(int x_in, int y_in){
X = X_in;
y = y_in;

Or, people that are coming from other languages will sometimes start all
class members with m_ so it looks like this:

public class Point{
int m_x;
int m_y;

public Point(int x, int y){
m.X = X;

my =Yy;

Personally, I prefer the first option, but it is a preference. All three are legal
options and will do the same thing.

5.2.4. Another special method: toString

All objects in Java have a method called tostring() This is used whenever we

convert to a string (like when we send to telemetry.addpata) The default has

the name of the class and its hash code (typically NOT useful.) This makes it

easier to debug when there are problems by showing what is inside the class.
So using our Point class example from above:

public class Point{
int x;
int y;

33

5. Class Members and Methods

public Point(int x, int y){

this.x = Xx;
this.y = y;
}
@Override
public String toString(){
return "Point " + x + " " + y;

}

You might be wondering why we use eoverride when we are not extending
another class. It turns out in Java that all classes extend the base class object

We are adding strings and numbers together here which may seem strange.
The string class redefines (overloads) the + operator to mean concatenate (join)
two strings together. It also overloads += to concatenate and then assign the
resultant string.* If it comes across something that isn’t a string, it calls
its tostring() method which works (mostly) as you would expect for primitive

types.

5.3. Controlling access- Keep your private things private

You can also modify all class methods and members with an access modifier.
(that is who can access it.) By default, members and methods are all package-
private. That means that only that class and other classes in the same package
(directory) can see them. The options are: (from most to least restrictive)

* private - It can only be seen with the class. It cannot be accessed from
outside the class.

* (default - none specified) - only that class and other classes in the same
package (directory) can see them

® protected - It can only be seen with the class, its children, and other
classes in the same package (We'll talk about children in chapter 14)

® public - It can be seen from everywhere. (You have seen this on init()
and loop()in your OpModes)

In general, you want to be as restrictive as makes sense. If you are modifying
the access, it goes first.

“No, in Java you can’t overload operators in your own classes.

34

© 0 N O Uk W N =

W W NN NN NN NN NN = o= e e e e e e e e
= O © 0 N O O A~ W N = O © ® N O U b W D = O

5.4. Creating your own classes

5.4. Creating your own classes

Hopefully you have been following along, so you are a pro at making your own
OpMode classes by now. We start the same (remember section 1.3)

1. Right click on org.firstinspires.ftc.teamcode
2. Select New > Java Class

But in this case we are going to name it RobotLocation and it will have no
Superclass so in Android Studio 3.x make sure the superclass is blank. (In
Android Studio 4.x there is no place to put in superclass)

Listing 5.3: RobotLocation.java

package org.firstinspires.ftc.teamcode;

public class RobotLocation{
double angle;

public RobotLocation(double angle) {
this.angle = angle;

public double getHeading() {
double angle = this.angle;
while(angle > 180){
angle -= 360;
}
while(angle < -180){
angle += 360;
3

return angle;

@Override
public String toString() {
return "RobotLocation: angle (" + angle + ")";

public void turn(double angleChange) {
angle += angleChange;

}
public void setAngle(double angle) {
this.angle = angle;

35

32

10
11
12
13
14
15
16
17
18
19

21
22
23
24

26
27
28

5. Class Members and Methods

Let’s talk about what makes up this class.

double angle;

Here is an example of the class member we talked about in section 5.1 Since
it doesn’t have an access modifier, it is default which means it is only available
to this class and other classes in the same package.

public RobotLocation(double angle) {
this.angle = angle;
}

This is an example of a constructor like we talked about in subsection 5.2.3.
You can tell a constructor because it has no return type and it has the same
name as the class. Constructors typically have the public access modifier so
a class can be created using it from anywhere. You'll notice that it assigns a
value to the the class member. It uses the this keyword so that we can have
the parameter named the same thing.

public double getHeading() {
double angle = this.angle;
while(angle > 180){
angle -= 360;
}
while(angle < -180){
angle += 360;
b

return angle;

}

This is a public class method that returns the heading (so it needs to be
within -180 and 180). This would be a great place for a comment describing
the method. We left comments out of most source in the book since the text of
the book comments them.

@Override
public String toString() {
return "RobotLocation: angle (" + angle + ")";

}

This is the special method tostring() that we talked about in subsection 5.2.4.

public void turn(double angleChange) {
angle += angleChange;

}

36

29
30
31

© 0 N O g ok W N =

LT T N S T N
A B N =~ O © 0 N O g A W N = O

5.4. Creating your own classes

This is a public class method where we can specify how much the robot is
turning. You’'ll notice that since the parameter is not the same as the class
member we are using that we don’t have to use the this keyword for the class
member. You'll also notice that we use the add and assign operator += as a
shortcut.

public void setAngle(double angle) {
this.angle = angle;
}

Here is another public class method where we can set the angle.

You might have noticed that there is no way to get the angle out. (We can
only get out the heading). We could absolutely add this method if we needed it.

Sometimes you’ll see programmers take the lazy way out and make class
members public so they don’'t have to write “setter” or “getter” methods (also
called accessor methods). The problem with that is that it makes it hard for
you to change the internals later without affecting other parts of your code.

For example, if you wanted to change it to keep things in radians internally:

Listing 5.4: RobotLocationRadians. java

package org.firstinspires.ftc.teamcode;

public class RobotLocationRadians {
double angleRadians;

public RobotLocationRadians(double angleDegrees) {
this.angleRadians = Math.toRadians(angleDegrees) ;

public double getHeading() {
double angle = this.angleRadians;
while (angle > Math.PI) {
angle -= 2 * Math.PI;
}
while (angle < -Math.PI) {
angle += 2 * Math.PI;
}

return Math.toDegrees(angle) ;

@Override
public String toString() {

37

25
26
27
28
29
30
31
32
33
34
35

© ® N o g ok W N =

_ e e
w N = O

5. Class Members and Methods

return "RobotLocationRadians: angle (" + angleRadians + ")";

public void turn(double angleChangeDegrees) {
angleRadians += Math.toRadians(angleChangeDegrees) ;

public void setAngle(double angleDegrees) {
this.angleRadians = Math.toRadians(angleDegrees) ;

I used some methods in the Math class so I wouldn’t have to write the rou-
tines to convert from Degrees to Radians and back. We talk about the Math
class in section 17.2. 5

You'll notice that the way your class is used doesn’t have to change (I only
renamed it so I could keep them in the same package. In practice, you wouldn’t
even rename your class.)

Laziness is no longer a good excuse in Android Studio
~' because you can right click on a member variable,
= select “Generate...” and choose getter and setter and
Android Studio will make these methods for you!

It is interesting that we made our own class, but to be useful we need an
OpMode that uses it.

Listing 5.5: useRobotLocationOpMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp
public class UseRobotLocationOpMode extends OpMode {
RobotLocation robotLocation = new RobotLocation(0);

@Override
public void init() {
robotLocation.setAngle(0);

}

5In general, using a routine in a library is better than writing it yourself.

38

14
15
16
17
18
19
20
21
22
23
24
25
26

10
11
12
13

15
16
17
18
19

5.4. Creating your own classes

@Override
public void loop() {
if(gamepadl.a) {
robotLocation.turn(0.1);
3
else if(gamepadl.b){
robotLocation.turn(-0.1);
}
telemetry.addData("Location", robotLocation);
telemetry.addData("Heading", robotLocation.getHeading());

This is the OpMode that uses our new class. The first 7 lines are the same
so we'll start after that.

RobotLocation robotLocation = new RobotLocation(0);

This is a data member in our OpMode. You'll notice that it uses the new
keyword. We use this whenever we are creating an instance of a class (or
object). The new keyword tells the compiler to reserve room for it and call the
constructor that matches the parameters you gave it. (type only, the names are
ignored) Also by convention variables start with a lower case letter while the
class starts with an upper case letter. They don’t have to be named the same
but often are.

@Override
public void init() {
robotLocation.setAngle(0);

}

Inside our init () method, we call the setangle() method of the robotLocation
object. The reason we call setangle() here is in case we select the opMode, init
it, run it and then stop and press init again. If we don’t set it in init() then it
will keep its value from the last time it was modified.

Vi
-

_:: As a best practice for FTC, your init ()method should
= set things back to their expected default state.

@Override
public void loop() {
if(gamepadl.a){
robotLocation.turn(0.1);

}

39

20
21
22

5. Class Members and Methods

else if(gamepadl.b){
robotLocation.turn(-0.1);

}

Obviously this doesn’t turn the robot (because we don’t have any motors
hooked up), so perhaps turn() was an unfortunate naming choice. Run this
and you’ll get a feel for how fast 1oop() is called. Also, we don’t allow the
user to turn positively and negatively at the same time (since that makes no
sense). Since it looks at gamepadi.a first, if they are both pressed then it will
turn positively.

5.5. static

The static keyword means that it belongs to the type instead of the object. This
can be used for methods (but then they can’t access any non-static members
or methods) or for class members.

For class members, it is used typically for constants when you want all in-
stances to share it.

For methods, it is often used when you want to let someone call a method
and they don’t need to have an object of that type first.

5.6. Exercises

1. Add a double getangle() method to RobotLocation and then display it in
your opMode.

2. This exercise has two parts.

a) Add a member of type double called x to your RobotLocation and
add double getX(), void changeX(double change), and setX(double x)
methods.

b) Change the OpMode to have robotLocation.changex(-0.1) called when
gamepad1.dpad_left is pressed and
robotLocation.changeX(0.1) when gamepad1.dpad_right is pressed

3. After you have done exercise 2, also add in support for y. Use
gamepad1.dpad_up for robotLocation.changeY(0.1)
and gamepadi.dpad_down for robotLocation.changeY(-0.1)

40

6. Our first hardware

Until this point, we have been in pure software that hasn’t used any of our
hardware. That is fine, but our robot will be pretty boring without any sensors,
motors, or servos. This (and following chapters) assume you have a program-
ming board setup like in Appendix A

6.1. Configuration file

This will feel like a lot of steps the first time, but soon it’'ll become very natural
to run through them.

1. From either the Driver Station or the Robot Con-
troller - select the three dots in the upper right

2. Select New in the upper left

3. After you press new, it should find your expan-
sion hub. If it doesn’t, please make sure your
USB cable is connected between the phone and
the expansion hub. (The letters and digits of your
expansion hub will be unique to your hub.)

4. Press on “Expansion Hub Portal 1”

41

6. Our first hardware

5. While you can rename it from “Expansion Hub
Portal 17, I don’t see any reason to. You will see
each expansion hub that is plugged in. If you only
have 1, it should say “Expansion Hub 2”. Press
on it.

6. This will give you a listing of all of the areas where
you can have communication from your REV ex-
pansion hub. Press on “Digital Devices”

| o o |
—

7. On Port 1, Change to “REV Touch Sensor” :)

8. Change its name to be “touch_sensor” , m ::::::

9. Press Done in the upper left (going up to Expan-
sion Hub 2)

10. Press Done again (going up to Expansion Hub Por-
tal 1)

11. Press Done again (going up to top level)

12. Press Save

13. Change name to “programming board”

42

© ® N OO g ok W N -

— = =
[N]

6.2. Mechanisms

14. Press OK

15. Press Activate under “programming board” The
upper right should now say “programming_board”

16. Press the left pointing arrow on the bottom. This
will restart the robot

17. On the Driver Station, you should see “program-
ming_board” under the image of a robot.

6.2. Mechanisms

Until this point we have had everything in one package. At this point, we are
going to split things into two packages. One will hold our mechanisms (For
this book, we have one mechanism called the ProgrammingBoard.! On our
real robot we would likely have multiple mechanisms.) The other will hold our
opModes.

So there are now two classes:

This one is in the mechanisms package. To create a package, right click in
the same place that we have to make a new class, but select new package and
type in “mechanisms”.

That will make the package. Then right click on the package and select
new class. This one should be “ProgrammingBoardl” and it should have no
superclass.

Listing 6.1: ProgrammingBoardl. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoardl {
private DigitalChannel touchSensor;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor.setMode(DigitalChannel.Mode. INPUT) ;

}

'To make writing the book easier, I added a number at the end so I could keep them all in one
package. Normally you would just add things to your existing class instead of making a new
one.

43

13
14
15
16
17

10

11

6. Our first hardware

public boolean getTouchSensorState() {
return touchSensor.getState();

}

Line 1 should be put in for you by Android Studio.
Lines 3 & 4 will be put in as you type items.
Line 6 should start out that way as you create the class

private DigitalChannel touchSensor;

This line says that we have a class member of type pigitalChannel with a
name of touchSensor. DigitalChannel comes from the FTC SDK. We'll talk about
how to navigate the SDK to find out what is there in chapter 16. This needs
to be a class member since it is set in init() and used in other methods. We
set it to private to make sure only our class can interact directly with it. This
is a good practice for all hardware. Normally you would want to name it with
what the sensor does (like armInPositionTouchSensor, but since this is part of
a programming board it doesn’t have more of a purpose than being a Touch
Sensor.

public void init(HardwareMap hwMap) {

We have an init () method. We could have called it anything, but since we’ll
call it from our init() in our OpMode it seemed reasonable. While it might be
tempting to make this the constructor, that limits what we can and can’t do,
so it is easier to follow the same structure. You’'ll notice that this takes one
parameter of type HardwareMap and it is called hwmap. We could have called it
hardwareMap but I am lazy so I took a shortcut. HardwareMap also comes from the
FTC SDK and it is how our programs get information from the configuration
file on the robot.

touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");

This assigns to the variable touchSensor the hardware that is in the config-
uration file of type pigitalchannel.class and with a name of touch_sensor. This
name has to match EXACTLY what is in the configuration file. It may seem
strange to you that you don’t have to use new here. That is because the get ()
method of HardwareMap does it for you.

touchSensor. setMode(DigitalChannel.Mode. INPUT) ;

It turns out that you can set each pigitalChannel as either INPUT or OUTPUT.
Since we are reading from the touch sensor, we need to set it as an INpPUT .

44

14
15
16

© ® N o g ok W N =

L S S S
S © ® N ® G~ W N = O

10

12
13

6.3. OpMode

public boolean getTouchSensorState() {
return touchSensor.getState();

}

We create a class method so that those outside of our class can read the state
of the touchSensor. This is better than making touchSensor public because
nobody can change how it is configured.

6.3. OpMode

This one is in the opmodes package

Listing 6.2: TouchSensorOpMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoardl;

@TeleOp()
public class TouchSensorOpMode extends OpMode {
ProgrammingBoardl board = new ProgrammingBoardl();
@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
telemetry.addData("Touch sensor", board.getTouchSensorState());

The first few lines of this should look amazingly familiar by now.

ProgrammingBoardl board = new ProgrammingBoardl();

Here we create a class member of type pProgrammingBoard1 named board and
we set it equal to a new instance of programmingBoard1 It has to be a class mem-
ber so all of our methods can access it.

public void init() {
board. init(hardwareMap) ;

45

14

17
18
19

© ® N OO g ok W N =

e e
N oo o WN o~ O

6. Our first hardware

}

Our init is very clean. It only calls the init of our board object. The vari-
able hardwareMap is part of the OpMode and it is how we see how the robot is
configured.

public void loop() {
telemetry.addData("Touch sensor", board.getTouchSensorState());

}

For the loop all we do is send to the telemetry the state of the touch sensor.

6.4. Making changes

One of the huge advantages of splitting things out is that we can isolate hard-
ware “weirdness”. For example, you were probably surprised that pushing in
the touch sensor returns false and it not pushed in was true. So let’'s change
that.

First, we’ll change our ProgrammingBoard class. The easiest way to do this
is right click on the file, select copy. Then select paste and give it the new file
name. Then you can just make the changes instead of typing everything in
again.

Listing 6.3: ProgrammingBoard2. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoard2 {
private DigitalChannel touchSensor;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor.setMode(DigitalChannel.Mode. INPUT) ;

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

While we could have done code like:

46

© 0 N O gk W N =

[T S S R~ T R R S
S © ® N O a bk~ W N = O

6.4. Making changes

public boolean isTouchSensorPressed() {
if(!touchSensor.getState()){ // if state is false, touch sensor is pressed
return true;

}

return false;

It turns out that doing it in one line does exactly the same thing.

Also, since we changed the name of the method, we have to change it in the
OpMode as well.

If we right click on a class method (or class member)
:: name and Refactor->Rename in Android Studio then it
= will magically change it both in its declaration and
everywhere it is called.

Listing 6.4: TouchSensorOpMode2. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard2;

@TeleOp()
public class TouchSensorOpMode2 extends OpMode {
ProgrammingBoard2 board = new ProgrammingBoard2();
@Ooverride
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
telemetry.addData("Touch pressed", board.isTouchSensorPressed());

47

6. Our first hardware

6.5. Exercises

1. Add a method isTouchSensorReleased() to the ProgrammingBoard2 class and
use it in your opMode

2. Have your opMode send “Pressed” and “Not Pressed” for the “Touch sen-
sor” instead of true or false. There are lots of ways to do this.

48

7. Motors

It is great that we have a sensor, but it is time to make things move!!

7.1. Editing Configuration File

1. From either the Driver Station or the Robot Con-
troller - select the three dots in the upper right

2. Press edit under the “programming board” config
that we made earlier

3. Press on “Expansion Hub Portal 1”

4. While you can rename it from “Expansion Hub
Portal 17, I don’t see any reason to. You will see
each expansion hub that is plugged in. If you only
have 1, it should say “Expansion Hub 2”. Press
on it.

49

W N =

7. Motors

10.
11.

12.

13.

14.

15.

This will give you a listing of all of the areas where
you can have communication from your REV ex-
pansion hub. Press on “Motors”

On Port 0, Change to “Rev Robotics 40:1 HD Hex
Motor”

Change its name to be “motor”

Press Done in the upper left (going up to Expan-
sion Hub 2)

Press Done again (going up to Expansion Hub Por-
tal 1)

Press Done again (going up to top level)

Press Save
Press OK

Press Activate under “programming board” The
upper right should now say “programming_board”

Press the left pointing arrow on the bottom. This
will restart the robot

On the Driver Station, you should see “program-
ming board” under the image of a robot.

7.2. Mechanisms

Listing 7.1: ProgrammingBoard3.java

uuuuu

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;

50

© 0 N O O

11
12
13
14
15
16
17
18
19
20
21
22
23
24

14

15

7.2. Mechanisms

import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoard3 {
private DigitalChannel touchSensor;

private DcMotor motor;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor.setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;

}

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

Most of this should look the same as our last file, so we’ll just talk about the
changes

private DcMotor motor;

Here we are adding a variable of type DcMotor with name motor. Normally you
would want to name the motor with what it does, but since this is part of a
programming board - we’ll just call in motor. beMotor comes from the FTC SDK.

motor = hwMap.get(DcMotor.class, "motor");

This assigns to the variable motor the hardware that is in the configuration
file of type DcMotor.class and with a name of motor. This name has to match
EXACTLY what is in the configuration file.

motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;

This sets how we want to use the motor. The choices are:

51

21
22
23

7. Motors

‘ RunMode

RUN_TO_POSITION The motor is to attempt to rotate in whatever
direction is necessary to cause the encoder
reading to advance or retreat from its current
setting to the setting which has been provided
through the setTargetPosition() method.
RUN_USING_ENCODER The motor is to do its best to run at targeted
velocity.

RUN_WITHOUT ENCODER The motor is simply to run at whatever velocity
is achieved by applying a particular power
level to the motor.

STOP_AND_RESET_ENCODER | The motor is to set the current encoder
position to zero.

We set it here to DcMotor.RunMode . RUN_USING_ENCODER which means that it uses
the encoder on the motor so that we are setting a speed and it figures out how
to modify power to get to that speed (if possible). We like this mode because if
you set two motors to the same speed then they have a better chance at being
at the same speed than in any other mode. (We have met teams that don’t even
plug in the encoders and they are having weird problems with the robot not
driving straight.)

Meaning ‘

While RUN_TO_POSITION can be very handy for single

motors, we recommend AGAINST using it in a drive

train because the different speeds for the different

i wheels trying to get to a position can cause wacky side

3: effects. This is because each motor is trying to get to

- its position irregardless of the other motors. So you

can have a robot “wiggle”. In a perfect world without
friction this would work the same. However, we don’t

live in that world. :-)

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

}

This is a class method so that code outside our class can set the speed of
the motor. This is better than exposing the motor as public because people
can’'t accidentally change configuration. setPower()on a motor takes a double
between -1.0 and 1.0. -1.0 is full speed “backwards”, 0.0 is stopped, and 1.0
is full speed “forwards”.

52

© 0 N O Uk W N =

P T S S S o
S © ®» N ® O b~ W N ~ O

17
18
19

7.3. OpMode

7.3. OpMode

This one is in the opmodes package

Listing 7.2: MotorOpMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard4;

@TeleOp()
public class MotorOpMode extends OpMode {
ProgrammingBoard4 board = new ProgrammingBoard4();
@Override
public void init() {
board. init(hardwareMap) ;

}

@Override
public void loop() {
board.setMotorSpeed(0.5);

}

This has very little that is new, so we’ll only talk about that.

public void loop() {
board.setMotorSpeed(0.5);

}

Here we don’t do anything conditional. We just set the motor to a speed of
0.5 (half way forwards) Technically we could have had a start() method that
did this but since we have to have a loop() in our OpMode anyway, we went
for the simple. Yes, it will tell the motor to go to the same speed over and over.
It doesn’t matter.

7.4. Motor as Sensor
The motor also has a rotation sensor built into it. We are using it when we say

RUN_USING_ENCODER, but we can also read it and use it in our code. It’ll
need a method in the ProgrammingBoard class so we can read it.

53

© 0 N O g ok W N =

N N N N NN NN N NN = = e e e e e e e e
© 0 N O O bk W N = O © ® N O BN~ W N = O

10

17

7. Motors

Listing 7.3: ProgrammingBoard4.java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoard4 {
private DigitalChannel touchSensor;
private DcMotor motor;
private double ticksPerRotation;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor.setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();

}

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

}
public double getMotorRotations() {

return motor.getCurrentPosition() / ticksPerRotation;

Most of this is the same so we’ll just talk about the differences

private double ticksPerRotation;

This is a member variable where we will store the number of encoder ticks
per rotation. We do this to make things easier for the opModes.

ticksPerRotation = motor.getMotorType() .getTicksPerRev();

If we set the exact motor we have in the configuration, then we can do this
to get the number of ticks per rev (revolution). I prefer to call them rotation
since our students come from FLL teams where they are more used to that
terminology. If you have additional gear changes after the motor, you’ll have
to calculate this. For example if you have a 2:1 gear reduction then you would

54

26
27
28

© 0 N O g ok W N =

[T N S S R
= O © 0 N O a b~ W b = O

19

7.4. Motor as Sensor

simply multiply the number of ticks per rev at the motor by 2 to get the number
of revolutions of your mechanism.

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

This is a class method where we return the number of motor rotations. To
get the number of rotations from the number of encoder ticks, we simply divide
the number of ticks by the number of ticks in a rotation. One nice thing about
Java is that if there is math between an int and a double, the result will be a
double. (However, be warned that dividing an int by an int always gives an int
result even if it doesn’t divide equally. So for example 5 / 2 will be 2.)

Listing 7.4: MotorOpMode2. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard4;

@TeleOp()
public class MotorOpMode2 extends OpMode {
ProgrammingBoard4 board = new ProgrammingBoard4();
@Ooverride
public void init() {
board. init(hardwareMap) ;

@Ooverride
public void loop() {
board.setMotorSpeed(0.5);
telemetry.addData("Motor rotations", board.getMotorRotations());

This only has one line added from before

telemetry.addData("Motor rotations", board.getMotorRotations());

Here we are simply sending to telemetry what we are seeing from the motor
rotations.

55

© 0 N O Uk W N =

I I S T T T ST p
& O K& @R =~ S © ® N O g oA W N = O

7. Motors

’ If your encoder counts are not going up when you are
,': sending a positive speed to your motor, you probably
have the power wires flipped going to the motor.

7.5. Motors and Sensors together

We don’'t need to make any change to our configuration file or our Program-
mingBoard file since they already have a motor and a sensor.

Listing 7.5: MotorSensorOpMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard4;

@TeleOp()
public class MotorSensorOpMode extends OpMode {
ProgrammingBoard4 board = new ProgrammingBoard4();
@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
if(board. isTouchSensorPressed()) {
board.setMotorSpeed(0.5);

}

else{
board.setMotorSpeed(0.0);

}

telemetry.addData("Motor rotations", board.getMotorRotations());

Remember that setting the motor speed to O makes it stop. You can
set for each motor what you would like it to do when set to zero by
calling setzeroBehavior() with either DcMotor.ZeroPowerBehavior.BRAKE OT

DcMotor.ZeroPowerBehavior.FLOAT

56

© 0 N O gk W N =

e e e e e
® N O g oA~ W N = O

7.6. Motors and Gamepads

So in this case, when the touch sensor is pressed we move the motor “for-
ward” at half speed. When it isn’t, we stop it.

You may end up in a circumstance where you want “forward” to be the
opposite direction of clockwise. (Like on the left hand side of your drive
train). To do this, you simply call the motor’s method setbDirection() with
DcMotorSimple.Direction.REVERSE and if you want to change it back you call it
with DcMotorSimple.Direction. FORWARD. The motor remembers these settings.

So you might make your ProgrammingBoard class init() method look like
this:

motor = hwMap.get(DcMotor.class, '"motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
motor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE) ;
motor.setDirection(DcMotorSimple.Direction.REVERSE) ;
ticksPerRotation = motor.getMotorType().getTicksPerRev();

7.6. Motors and Gamepads

And of course, we can use our Gamepad just like a sensor. (we are sensing
what the human is doing.)

Listing 7.6: MotorGamepadOpMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard4;

@TeleOp()
public class MotorGamepadOpMode extends OpMode {
ProgrammingBoard4 board = new ProgrammingBoard4();
@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
if(gamepadl.a) {

57

19
20
21
22
23
24
25
26

© 0 N O Uk W N =

NN NN NN e e e e e e e e e
O A~ W N = O © ® N O O b W M = O

7. Motors

board.setMotorSpeed(0.5);

3

elsef{
board.setMotorSpeed(0.0);

}

telemetry.addData("Motor rotations", board.getMotorRotations());

This is exactly the same as before except for using gamepad1.a instead of the

touch sensor.

But we don’t have to be limited to just the buttons. We can make it finer

controlled by using an analog input from the gamepad

Listing 7.7: MotorGamepadOpMode2. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;

import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard4;

@TeleOp()
public class MotorGamepadOpMode2 extends OpMode {

ProgrammingBoard4 board = new ProgrammingBoard4();
@Override
public void init() {

board. init(hardwareMap) ;

@Override
public void loop() {
double motorSpeed = gamepadl.left_stick_y;

board.setMotorSpeed(motorSpeed) ;

telemetry.addData("Motor speed", motorSpeed);
telemetry.addData("Motor rotations", board.getMotorRotations());

Yes, we could have used gamepadl.left_stick_y twice instead of making a
motorSpeed variable. But I prefer to do it this way in case I want to do any math

on the motorspeed before using it.

58

7.7. Exercises

7.7. Exercises

1. Add a method to the ProgrammingBoard that allows you to change the
ZeroPowerBehavior of the motor, and then add to your OpMode where
pressing gamepad1.a sets it to BRAKE and gamepad1.b sets it to FLOAT.

2. Make the joystick less sensitive in the middle without losing range by
bringing in the squareInputwithsign() method from section 5.2 into your
opMode and using it.

59

© 0 N O gk W N =

e e e e e
® N O g oA~ W N = O

8. Servos

8.1. Configuration File

Follow steps 1-5 of section 7.1, but select Servos

6. On Port O, Change to “Servo”

7. Change its name to be “servo” .

Continue with steps 8 and on of section 7.1

8.2. Mechanisms

Let’s start with what we need to do to our ProgrammingBoard class.

Listing 8.1: ProgrammingBoard5. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

public class ProgrammingBoard5 {
private DigitalChannel touchSensor;
private DcMotor motor;
private double ticksPerRotation;
private Servo servo;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;

61

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

12

20

32
33
34

8. Servos

ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");

}
public boolean isTouchSensorPressed() {

return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

}
public double getMotorRotations() {

return motor.getCurrentPosition() / ticksPerRotation;

}

public void setServoPosition(double position) {
servo.setPosition(position);

This is very similar to the ones before. We'll just talk about the new parts.

private Servo servo;

Here we create a class member of type servo named servo. The servo class
comes from the FTC SDK. Again, we would use a more descriptive name on our
robot.

servo = hwMap.get(Servo.class, "servo");

This assigns to the variable servo the hardware that is in the configuration
file of type servo.class and with a name of servo. This name has to match
EXACTLY what is in the configuration file.

public void setServoPosition(double position) {
servo.setPosition(position);

This allows code outside of our class to set the servo position. Typically we
might expose a method for each position we want it to go to - for example
setClawOpen() and setclawClose()

servo.setPosition() takes a double which is a fraction between 0.0 and 1.0
saying where in that range to move. We can programmatically change what
that means with two methods:

1. servo.setDirection(Servo.Direction.REVERSE) flips your range. (and yes
you can also call it with servo.Direction.FORWARD to {lip it back)

62

© ® N o g ok W N =

NN NN = = o e e — s e e e
W N = O © ®» N G N = O

8.3. OpMode

2. servo.scaleRange(double min, double max)sets the logical min and max.
Then servo.setPosition() is a fraction between that range. ! It is relative
to the entire range, so you can set it back with servo.scaleRange(0.0,
1.0).

As an example, you might have this in the init () method

servo = hwMap.get(Servo.class, "servo");
servo.setDirection(Servo.Direction.REVERSE) ;
servo.scaleRange(0.5, 1.0); // only go from midpoint to far right point

8.3. OpMode

This one is in the opmodes package

Listing 8.2: servoGamepadOpMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard5;

@TeleOp()
public class ServoGamepadOpMode extends OpMode {
ProgrammingBoard5 board = new ProgrammingBoard5() ;
@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
if(gamepadl.a) {
board.setServoPosition(1.0);
}
else if(gamepadl.b) {
board.setServoPosition(0.0);

}

'The min has to be less than the max, so you can’t use this to flip the direction.

63

24
25
26
27
28

17
18
19
20
21
22
23
24
25
26
27

8. Servos

elsef{
board.setServoPosition(0.5);

}

The only new thing here is:

public void loop() {

}

if(gamepadl.a) {
board.setServoPosition(1.0);

}

else if(gamepadl.b){
board.setServoPosition(0.0);

}

else{
board.setServoPosition(0.5);

3

You'll see that we are using chained if and else so that we only try to set the
servo position to one location. Otherwise we will confuse the servo and you’ll
likely see some jitter on it. (although the last one will likely win since there is
more time in between calls to loop () than within loop ()

8.4.

1.

64

Exercises

Change the ProgrammingBoard class so that the servo is backwards and
only goes from the midpoint to far left.

Change the opMode so that how far you push in gamepadi.left_trigger
determines the position of the servo.

© 0 N O gk W N =

e e e
w N = O

9. Analog Sensors

We'll be using a potentiometer here, but the same concepts work for all ana-
log sensors. It is very common to abbreviate potentiometer as “pot” because
potentiometer is hard to spell.

9.1. Configuration File

Follow steps 1-5 of section 7.1, but select Analog Input Devices

6. On Port O, Change to “Analog Input” =

7. Change its name to be “pot” 2 e

Continue with steps 8 and on of section 7.1

9.2. Mechanisms

First, lets add support to our ProgrammingBoard class.

Listing 9.1: ProgrammingBoard6. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.AnalogInput;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.util.Range;

public class ProgrammingBoard6 {
private DigitalChannel touchSensor;
private DcMotor motor;
private double ticksPerRotation;

65

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15

24

39
40
41

9. Analog Sensors

private Servo servo;
private AnalogInput pot;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");
pot = hwMap.get(AnalogInput.class, "pot");

}

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;
}
public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;
}
public void setServoPosition(double position){
servo.setPosition(position);
}
public double getPotAngle() {
return Range.scale(pot.getVoltage(), 0, pot.getMaxVoltage(), 0, 270);

Most of this is the same, so we’ll just explain the new bits.

private AnalogInput pot;

We are declaring a class member of type Aanaloginput with name pot. The
AnalogInput class comes from the FTC SDK.

pot = hwMap.get(AnalogInput.class, "pot");

This assigns to the variable pot the hardware that is in the configuration file
of type AnalogInput.class and with a name of pot. This name has to match
EXACTLY what is in the configuration file.

public double getPotAngle(){
return Range.scale(pot.getVoltage(), 0, pot.getMaxVoltage(), 0, 270);

66

© 0 N O Uk W N =

e e
a A~ W N = O

9.3. OpMode

This is a class method that returns the angle to potentiometer is currently
at. It turns out that the analoginput class gives us a voltage. We could just
expose that with a getpPotvoltage() method, but then our other code has to
know about voltage when it makes more sense to think in terms of the angle it
is pointing at. We use a cool trick here to translate from voltage to angle.

There is a utility class in the FTC SDK called range that has a method called
scale(). It will translate a number from one range to another one. So for
example if you call

double output = Range.scale(25, 0, 100, 0.0, 1.0);

then it would figure out that the input (25) was 1/4 of the way between O
and 100. It would then figure out what 1/4 between O and 1.0 is and would
set output to 0.25.

In this case we know that the lowest possible voltage that could be detected
is 0, the highest we can get by calling pot . getMaxvoltage(). We know our poten-
tiometer can be between O and 270 degrees. So we use Range.scale to convert
for us.

You might have noticed that you made a method call on a class instead of an
object (a variable of type class). That is because it is a static method. This is
an example of what we talked about in section 5.5.

9.3. OpMode

Now we need an OpMode that can use it.

Listing 9.2: potopMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard5;
import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard6;

@TeleOp()
public class PotOpMode extends OpMode {
ProgrammingBoard6 board = new ProgrammingBoard6() ;
@Override
public void init() {
board. init(hardwareMap) ;

}

67

16
17
18
19
20
21

9. Analog Sensors

@Override
public void loop() {
telemetry.addData("Pot Angle", board.getPotAngle());

}

Since we are doing the conversion in our ProgrammingBoard class, this be-
comes trivial. We are simply reporting the angle. This can be used on our robot
to know what angle something is turned to.

9.4. Exercises

1. Make a class method for your ProgrammingBoard that exposes the pot in
the range [0.0..1.0]

2. Now make an OpMode that sets the servo to the position that the pot is
returning in that range. Then you can turn the pot and it will cause the
servo to “follow” it.

68

© 0 N O gk W N =

e e e e e
® N O g oA~ W N = O

10. Color and Distance Sensors

10.1. Configuration File

Follow steps 1-5 of section 7.1, but select 12C Bus 1

6. On Port 0, Change to “REV Color/Range Sensor”

7. Change its name to be “sensor_color_distance”

Continue with steps 8 and on of section 7.1

10.2. Mechanisms

Let’s start by making a change to our ProgrammingBoard class.

Listing 10.1: ProgrammingBoard?7. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.AnalogInput;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.util.Range;

import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;

public class ProgrammingBoard7 {
private DigitalChannel touchSensor;
private DcMotor motor;
private double ticksPerRotation;
private Servo servo;

69

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

20
21

10. Color and Distance Sensors

private AnalogInput pot;
private ColorSensor colorSensor;
private DistanceSensor distanceSensor;

public void init(HardwareMap hwMap) {

touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");

touchSensor. setMode(DigitalChannel.Mode. INPUT) ;

motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");

pot = hwMap.get(AnalogInput.class, "pot");

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get (DistanceSensor.class, "sensor_color_distance");

3
public boolean isTouchSensorPressed() {

return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

}

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

3

public void setServoPosition(double position) {
servo.setPosition(position);

3
public double getPotAngle() {

return Range.scale(pot.getVoltage(), 0, pot.getMaxVoltage(), 0, 270);

3
public int getAmountRed() {

return colorSensor.red();

}
public double getDistance(DistanceUnit du) {

return distanceSensor.getDistance(du) ;

Most of this is similar so we’ll only talk about the new parts.

private ColorSensor colorSensor;
private DistanceSensor distanceSensor;

70

32
33

51
52
53

54
55
56

10.3. OpMode

This is a little different. A REV ColorSensor can act as both a color sensor
and a distance sensor.! So we make two variables - one for the colorSensor
class and one for the DistanceSensor class. Both of these classes are in the FTC
SDK.

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get(DistanceSensor.class, "sensor_color_distance");

Both of these follow the pattern we have seen before. The unusual part is
that they use the SAME string for the sensor. Again, it has to match EXACTLY
what is in the configuration file.

public int getAmountRed() {
return colorSensor.red();

}

This is a class method that returns the amount of red that the color sensor
sees (between O and 255) . The colorSensor class has several class methods
that are useful.

| Method | What it returns \
red() Amount of red seen (0-255)
green() Amount of green seen (0-255)
blue() Amount of blue seen (0-255)
argb() An integer in the format #aarrggbb
(where a is alpha, r is red, g is green, b
is blue)

public double getDistance(DistanceUnit du){
return distanceSensor.getDistance(du) ;

}

This uses a neat class included in the FTC SDK called pistanceunit. It allows
us to decide what units we want to work in and hopefully keeps us from making
a NASA class mistake with units.? This is a simple pass through so we’ll talk
more about DistanceUnit as we discuss the OpMode.

10.3. OpMode

And we need an OpMode that can use it.

!Although the distance sensor part of a color sensor is much less accurate and over a smaller
range than a REV Distance sensor.
2https: //en.wikipedia.org/wiki/Mars_Climate_Orbiter

71

© 0 N O g ok W N =

L S T T T S e o SV
@R = O © ®» N G s W N = O

19

20
21

10. Color and Distance Sensors

Listing 10.2: pistanceColorOpMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard7;

@TeleOp()
public class DistanceColorOpMode extends OpMode {
ProgrammingBoard7 board = new ProgrammingBoard7();
@Override
public void init() {
board. init(hardwareMap) ;

@Override

public void loop() {
telemetry.addData("Amount red", board.getAmountRed());
telemetry.addData("Distance (CM)", board.getDistance(DistanceUnit.CM));
telemetry.addData("Distance (IN)", board.getDistance(DistanceUnit.INCH)) ;

A lot of this is similar, so let’s talk about the new parts.

telemetry.addData("Amount red", board.getAmountRed());

This simply prints the amount of red seen by the color sensor

telemetry.addData("Distance (CM)", board.getDistance(DistanceUnit.CM));
telemetry.addData("Distance (IN)", board.getDistance(DistanceUnit.INCH)) ;

This is showing the coolness of the pistanceunit class. By passing in different
values to getDistance(), we get it in the units we prefer. (you should prefer
metric - but since a lot of the FTC specs are in Imperial, it is helpful to be able
to do both.) The choices are:

‘ Parameter | Unit |
DistanceUnit.MM millimeter
DistanceUnit.CM centimeter

DistanceUnit.INCH inch
DistanceUnit.METER meter

72

10.4. Exercises

If you are using this with your class, you’ll have to decide what unit you are

going to store things in (I typically recommend CM, but that is up to you.) Then
you can convert things like this:

public class Square{
double length_cm = 10;

public double getLength(DistanceUnit du) {
return du.fromCm(length_cm);
}
public void setLength(double length, DistanceUnit du){
length_cm = du.toCm(length);
}

10.4. Exercises

1. Add a method getamountBlue()to the ProgrammingBoard and report it
back by changing the OpMode

2. Make the motor stop when the distance sensor sees something closer than
10cm and go at half speed when farther than that.

73

© 0 N O gk W N =

I T R N N N S
A & @ N = S © ® N O U b W N = O

11. Gyro (IMU)

11.1. Configuration File

Unlike everything else, you don’t need to add it to the robot configuration be-
cause it is already there as “imu”. You can rename it or delete it.

11.2. Mechanisms

Let’s start by adding support to our ProgrammingBoard class.

Listing 11.1: ProgrammingBoard8. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.hardware.bosch.BNOO55IMU;

import
import
import
import
import

com.
com.
com.
com.
com.
com.
com.
com.

org.

org

org.
org.
org.

qualcomm. robotcore.hardware.AnalogInput;

qualcomm.robotcore.hardware.ColorSensor;

qualcomm.robotcore.hardware.DcMotor;

qualcomm.robotcore.hardware.DigitalChannel;

qualcomm. robotcore.hardware.DistanceSensor;

qualcomm. robotcore.hardware.HardwareMap;

qualcomm. robotcore.hardware.Servo;

qualcomm.robotcore.util.Range;

firstinspires

.firstinspires.
firstinspires.
firstinspires.
firstinspires.

.ftc.
ftc.
ftc.
fte.
fte.

robotcore.external.
robotcore.external.
robotcore.external.
robotcore.external.
robotcore.external.

public class ProgrammingBoard8 {

private DigitalChannel touchSensor;

private DcMotor motor;

private double ticksPerRotation;

private Servo servo;

private AnalogInput pot;

private ColorSensor colorSensor;

navigation.AngleUnit;
navigation.AxesOrder;
navigation.AxesReference;
navigation.DistanceUnit;
navigation.Orientation;

75

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

11.

76

Gyro (IMU)

private DistanceSensor distanceSensor;
private BNOO55IMU imu;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");
pot = hwMap.get(AnalogInput.class, "pot");

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get (DistanceSensor.class, "sensor_color_distance");
imu = hwMap.get (BNOO55IMU.class, "imu");

BNOO55IMU. Parameters params = new BNOO55IMU. Parameters() ;

// change to default set of parameters go here

imu.initialize(params);

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;
3
public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;
3
public void setServoPosition(double position) {
servo.setPosition(position);
}
public double getPotAngle(){
return Range.scale(pot.getvVoltage(), 0, pot.getMaxVoltage(), 0, 270);
3
public int getAmountRed() {
return colorSensor.red();
}
public double getDistance(DistanceUnit du){
return distanceSensor. getDistance(du) ;
3
public double getHeading(AngleUnit angleUnit) {
Orientation angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
AxesOrder.ZYX,

71
72
73
74

27

40

41
42
43

68

69
70
71

11.2. Mechanisms

angleUnit);
return angles.firstAngle;

The IMU (Inertial Measurement Unit) that is inside of every REV Expansion
Hub and REV Control Hub is based off of the BNOO5S5IMU (say that 5 times
fast...) While it has a TON of capabilities, we are going to just barely tap into it
here.

private BNOO55IMU imu;

We create a class member of type BN00551MU (you guessed it from the FTC
SDK) with the name imu.

imu = hwMap.get (BNOO55IMU.class, "imu");

First, we get the imu from the hardware map (just like we have done with
other pieces of hardware). If you didn’t change the name in your configuration
(and you shouldn’t), it will be “imu”.

BNOO55IMU. Parameters params = new BNOO55IMU. Parameters() ;
// change to default set of parameters go here
imu.initialize(params);

Next, we create a variable of type BN0O055IMU.Parameters (a class within a
class.) named params. When we create it, it gets the default set of parame-
ters. We can modify them, but in this case we don’t.

Then we initialize the imu with the parameters.

public double getHeading(AngleUnit angleUnit) {

We are creating a class method so code outside of our class can get the
heading of the robot (actually REV hub). Much like we had pistanceunit before,
there is also a class called angleunit. There are two angle units supported:
DEGREES and RADIANS.! angleunit will make sure everything is normalized (that
means it will be within -180 and 180 degrees for pEGREES and between -II and
IT for RADIANS.?

Orientation angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
AxesOrder.ZYX,
angleUnit);

'No love for gradians... - https://en.wikipedia.org/wiki/Gradian
2Yes, this means our RobotLocation class could have been much simpler.

77

72

© 0 N O gk W N =

e e e
w N = O

11. Gyro (IMU)

The first thing I want to point out is that you can use white space to make
the code more readable (like is done here.)
imu.getAngularorientation takes three parameters:

1. AxesReference - can be either INTRINSIC (moves with object that is rotating)
or EXTRINSIC (fixed with respect to the world). (Yes, Axes is the plural of
Axis)

2. AxesOrder - what order you want the Axes returned in. We are saying we
want them in the order zyx. For reasons I don’'t understand in addition to
XYZ, XZY, ZXY, ZYX, YXz, yzX there is also xyX, xzX, YXy, yzy, zxz, zyz. If you
understand why, please contact me and tell me.

3. AngleUnit- What unit we want the angles in. This can be either DEGREES or
RADIANS.

return angles.firstAngle;

We return the firstangle of the orientation (which will be the Z Axis since we
asked for zvyx.)

This may seem really confusing, but the good news is that you only have to
write it once and make sure it works. Then after that you can forget all of the
complication and just call our class method getHeading().

11.3. OpMode

And here is our OpMode to use it.

Listing 11.2: GyroopMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@TeleOp()

public class GyroOpMode extends OpMode {
ProgrammingBoard8 board = new ProgrammingBoard8();
@Override
public void init() {

78

14
15
16
17
18
19
20
21

11.4. Exercises

board. init(hardwareMap) ;

}

@Override
public void loop() {
telemetry.addData("Our Heading", board.getHeading(AngleUnit.DEGREES)) ;

}

Really the only thing that is new here is our telemetry in line 19. Put it on
the programming board and turn it around and watch the telemetry change.

11.4. Exercises

1. Change the OpMode to also show the heading in RADIANS as well as
DEGREES

2. Make the motor stopped when our heading is O, go negative when our
heading is negative, and positive when our heading is positive.

79

© 0 N O gk W N =

I T R N N N S
A & @ N = S © ® N O U b W N = O

12. Dealing with State

State is where you remember what you have done and do something different
because of what you have done in the past.

12.1. A simple example

So far we have always done something depending on whether a button is cur-
rently pressed. What if you wanted it to do something when you first pressed
it (such as toggle a light)? Let’s do that in an OpMode.

Listing 12.1: ToggleOpMode. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@TeleOp()
public class ToggleOpMode extends OpMode {
ProgrammingBoard8 board = new ProgrammingBoard8() ;
boolean aAlreadyPressed;
boolean motorOn;
@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
if(gamepadl.a && !aAlreadyPressed) {
motorOn = !motorOn;
telemetry.addData("Motor", motorOn);
if (motorOn) {
board.setMotorSpeed(0.5);

} else {

81

26
27
28
29
30
31

11
12

20

21

23
24
25
26
27
28

30

12. Dealing with State

board.setMotorSpeed(0.0);

}
}

aAlreadyPressed = gamepadl.a;

Let’s break this down:

boolean aAlreadyPressed;
boolean motorOn;

Here we define two more class members. Since we don’t initialize them and
they are boolean they start out as false.

if(gamepadl.a && !aAlreadyPressed) {

In this line we are saying if gamepad1.a is true (pressed) AND aAlreadyPressed
is NOT true (false) then... (Remember that : means NOT. So it makes false
turn to true and true turn to false.)

motorOn = !motorOn;

This is a common shorthand. What it does is invert the boolean value. It
does exactly the same thing as this code:

if(motorOn) {
motorOn = false;
}else{
motorOn = true;

}

Normally, I like to avoid shortcuts but in this case it is so common that most
programmers would prefer the way it is done in the example.

if (motorOn) {
board.setMotorSpeed(0.5);
} else {
board.setMotorSpeed(0.0);
}
}

This actually turns on (or off) the motor. More than one programmer has
forgotten this piece and been puzzled when changing the value of a variable
called motorOn did not actually change the motor.

}

82

© 0 N O gk W N =

I T R N N N S
A & @ N = S © ® N O U b W N = O

12.2. Autonomous state - Example

Here we set aAlreadyPressed to the value of gamepadi.a.

Let’s think about how this code works. The first time a user presses the A
button, it will come in and gamepadi1.a will be true and aAlreadyPressed will be
false. So it will toggle the motoron class member and change the motor. If the
button is still held down the next time through, gamepad1.a will be true but so
will aalreadyPressed so it won't go into the if code block. Eventually our user
gets bored and lets go of gamepad1.a. The first time through, gamepadi.a will be
false and aAlreadyPressed Will be true. But then aalreadyPressed will be set to

false and we’ll be ready for our user to press gamepad1.a again.
Make sure you try this one and play with turning the motor on and off.

12.2. Autonomous state - Example

When writing autonomous code, you want to write it as separate steps. This

allows you to test out parts of it separately.

Listing 12.2: AutoStatel.java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@Autonomous()

public class AutoStatel extends OpMode {
ProgrammingBoard8 board = new ProgrammingBoard8() ;
int state;

@Override
public void init() {
board. init(hardwareMap) ;

}

@Override

public void start() {
state = 0;

}

@Override

public void loop() {
telemetry.addData("State", state);

83

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

11

18
19
20
21

25

26

12.

Dealing with State

if (state == 0) {
board.setServoPosition(0.5);
if (board.isTouchSensorPressed()) {

state = 1;
}

} else if (state == 1) {
board.setServoPosition(0.0);
if (!board.isTouchSensorPressed()) {

state = 2;
}

} else if (state == 2) {
board.setServoPosition(1.0);
board.setMotorSpeed(0.5);
if (board.getPotAngle() > 90) {

state = 3;
}

} else if (state == 3) {
board.setMotorSpeed(0.0);
state = 4;

} else {
telemetry.addData("Auto", "Finished");

Let’s break this down:

int state;

Here we create our state variable to hold which state we are in. If we don’t
assign an initial value it is zero.

@Override

public void start() {
state = 0;

}

Since it should be zero, why do we assign it again in start (). Well, imagine
that you test your auto. Press Stop, and then test it again. If we don'’t reset the
variable here then it will be whatever it was at the end of your test.

telemetry.addData("State", state);

It is very helpful for debugging to send to the driver station what step in your
auto program you are so you can figure out what is going on.

84

if (state == 0) {

27
28
29
30
31

© ® N O g ok W N =

LT T T T N N T N N S S I S
N0 R DN~ O © N e U W N = O

12.2. Autonomous state - Example

board.setServoPosition(0.5);
if (board.isTouchSensorPressed()) {
state = 1;
}
} else if (state == 1) {

You can see here an example of using if/else chaining. Also, you'll notice
that when the touch sensor is pressed, we change the value of state. So the
next time through we’ll go to the next chain.

But there is another way...

12.2.1. Using the switch statement

In Java, if you are comparing for a number of options you can use a switch
statement. Here is the same program rewritten with a switch statement.

Listing 12.3: AutoState2. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@Autonomous()
public class AutoState2 extends OpMode {
ProgrammingBoard8 board = new ProgrammingBoard8() ;

int state;

@Override
public void init() {
board. init(hardwareMap) ;

}

@Override

public void start() {
state = 0;

}

@Override

public void loop() {
telemetry.addData("State", state);
switch (state) {
case 0:

85

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

26

27

32

12. Dealing with State

board.setServoPosition(0.5);
if (board.isTouchSensorPressed()) {
state = 1;
3
break;
case 1:
board.setServoPosition(0.0);
if (!board.isTouchSensorPressed()) {
state = 2;
3
break;
case 2:
board.setServoPosition(1.0);
board.setMotorSpeed(0.5);
if (board.getPotAngle() > 90) {

state = 3;
}
break;
case 3:
board.setMotorSpeed(0.0);
state = 4;
break;
default:

telemetry.addData("Auto", "Finished");

You may think that since this is more lines that it is worse, but let’s look at
it anyway. (It is personal preference based on which you feel is more readable
and you can do things with if/else chaining that you can’t do with a switch
statement)

switch (state) {

A switch statement is written as switch(variable)

case 0:

Each case starts with the case keyword followed by the constant followed by
a colon :

break;

All code is executed until it hits the break statement. At this point, it jumps
to the closing brace of the switch statement.

86

50

© 0 N O gk W N =

I T R N N N S
A & @ N = S © ® N O U b W N = O

12.2. Autonomous state - Example

If you forget to put a break statement in, it will execute
the next case as well. There are reasons why you
:: might want to intentionally do this, but if it is
= intentional make sure you put a comment explaining
why you are doing it because most people will assume
it was a mistake.

default:

You can (but don’t have to) have a default: clause. This will be executed if
none of the other cases were a match.

But a problem with these two programs is that if you have to put one in the
middle, you have to make lots of changes. We can do better....

12.2.2. Switch with strings

Listing 12.4: AutoState3.java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@Autonomous()

public class AutoState3 extends OpMode {
ProgrammingBoard8 board = new ProgrammingBoard8() ;
String state = "START";

@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void start() {
state = "START";

@Override
public void loop() {
telemetry.addData("State", state);

87

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

12. Dealing with State

switch (state) {
case "START":
board.setServoPosition(0.5);
if (board.isTouchSensorPressed()) {
state = "WAIT FOR_SENSOR_RELEASE";
}
break;
case "WAIT_FOR_SENSOR_RELEASE":
board.setServoPosition(0.0);
if (!board.isTouchSensorPressed()) {
state = "WAIT _FOR_POT_TURN";
}
break;
case "WAIT_FOR_POT_TURN":
board.setServoPosition(1.0);
board.setMotorSpeed(0.5);
if (board.getPotAngle() > 90) {
state = "STOP";
}
break;
case "STOP":
board.setMotorSpeed(0.0);
state = "DONE";
break;
default:
telemetry.addData("Auto", "Finished");

Really all we have done is change state from an integer to a String. Now
our code is easier to read (called self-documenting) and it is easier to add in
another state. (Win-win!!)

But now if we have a typo in a string the compiler won’t catch it, and we’ll
have a problem in our code. What if we could have the readability of strings,
but have the compiler catch typos. We can....

12.2.3. Enumerated types

Listing 12.5: AutoState4.java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;

88

© 0 N o g b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

12.2. Autonomous state - Example

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@Autonomous()
public class AutoState4 extends OpMode {
enum State {
START,
WAIT FOR_SENSOR_RELEASE,
WAIT FOR_POT_TURN,
STOP,
DONE

ProgrammingBoard8 board = new ProgrammingBoard8() ;
State state = State.START;

@Ooverride
public void init() {
board. init(hardwareMap) ;

@Override
public void start() {
state = State.START;

@Override
public void loop() {
telemetry.addData("State", state);
switch (state) {
case START:
board.setServoPosition(0.5);
if (board.isTouchSensorPressed()) {
state = State.WAIT FOR_SENSOR_RELEASE;
3
break;
case WAIT _FOR_SENSOR_RELEASE:
board.setServoPosition(0.0);
if (!board.isTouchSensorPressed()) {
state = State.WAIT_FOR_POT_ TURN;
3
break;
case WAIT _FOR_POT_TURN:
board.setServoPosition(1.0);

89

49
50
51
52
53
54
55
56
57
58
59
60
61
62

10
11
12
13
14
15
16

28

12. Dealing with State

board.setMotorSpeed(0.5);
if (board.getPotAngle() > 90) {
state = State.STOP;
}
break;
case STOP:
board.setMotorSpeed(0.0);
state = State.DONE;
break;
default:
telemetry.addData("Auto", "Finished");

Let’s talk through some of this. This actually works exactly the same as
our first switch statement except now it is more readable (and we can’t assign
values to it that we aren’t expecting)

enum State {
START,
WAIT FOR_SENSOR_RELEASE,
WAIT FOR_POT_TURN,
STOP,
DONE

}

enum is short for Enumerated. It is a way we can give names to values. We
can add an accessor modifier to this so that the enum can be accessed outside
the class, but we didn’t in this case. By convention, we make all values of an
enum ALL_CAPS. They have a comma in between each one. Most of the time, it
is best to put each one on its own line but you don’t have to.

This is declaring a new type called state. It is just like making a class. An
enum is actually a special class that extends java.lang.Enum. So yes, you can
put methods and class members in it. But you don’t need to and typically
don’t. (So yes, you could put an enum in its own file. And yes, you can create
a class inside of a class.)

state = State.START;

Now instead of type string it is of type state. We initialize it to state.START.
Note that we use the type followed by a dot . followed by the enum value. You
probably noticed that Android Studio helped you type it in. Yet another huge
benefit over a string.

90

33

© 0 N O gk W N =

I T R N N N S
A & @ N = S © ® N O U b W N = O

12.83. It’s all relative

telemetry.addData("State", state);

One of the really cool things about enum is that they implement tostring
automagically so when you print them you get human readable descriptions.

12.3. It’s all relative

For a lot of autonomous programs, you may want things to occur for an amount
of time or an amount of encoder ticks. To do this we need to save off the time
or ticks when we started.

To get the time, all opModes have access to getRuntime() which returns a
double that is the number of seconds since the opMode was created. This
isn’t very useful by itself because we don’t know how long ago that was be-
fore “START” was pushed. There is also a resetstartTime() which makes the
current time zero. (We often put this in our start () method)

Listing 12.6: AutoTime.java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@Autonomous()
public class AutoTime extends OpMode {
enum State {
START,
SECOND_STEP,
DONE

ProgrammingBoard8 board = new ProgrammingBoard8();
State state = State.START;
double lastTime;

@Override
public void init() {
board. init(hardwareMap) ;

@Override

91

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

25
26
27
28
29
30

12. Dealing with State

public void start() {
state = State.START;

resetStartTime();
lastTime = getRuntime();
}
@Override

public void loop() {
telemetry.addData("State", state);
telemetry.addData("Rumtime", getRuntime());
telemetry.addData("Time in State", getRuntime() - lastTime);
switch (state) {
case START:
if (getRuntime() >= 3.0) {
state = State.SECOND_STEP;
lastTime = getRuntime();
}
break;
case SECOND_STEP:
if (getRuntime() >= lastTime + 3.0) {
state = State.DONE;
lastTime = getRuntime();
}
break;
default:
telemetry.addData("Auto", "Finished");

Let’s talk through some of the pieces here.

@Override

public void start() {
state = State.START;
resetStartTime();
lastTime = getRuntime();

}

We are taking advantage of the optional start() method here. Remember
that this is called ONCE when the OpMode is started. We moved setting of
our state variable here because it seemed to make more sense, but leaving it
in init () will work fine as well. We call resetstartTime () which will make our
runtime zero. We could have just set lastTime to zero here, but we like getting
the runtime as it keeps things more similar.

92

35
36

39

41

45

12.4. Exercises

telemetry.addData("Rumtime", getRuntime());
telemetry.addData("Time in State", getRuntime() - lastTime);

In the first one, we are showing our total runtime. In the second, we show
our relative. This is done by keeping track of when we went into a state and
then showing the difference.

if (getRuntime() >= 3.0) {

It is really important that we compare with a >= instead of an == because the
runtime increments in sub-milliseconds so the odds of it being exact are very
low.

lastTime = getRuntime();

When we get ready to change states, we set thelastTime variable. We could
have called resetstartTime() but then we wouldn’t be able to know also our
runtime as well as time in state.

if (getRuntime() >= lastTime + 3.0) {

Here you’ll notice that we are comparing to lastTime + 3.0 (Obviously if we
wanted it to be 5 seconds instead, we would make it + 5.0)

Hopefully, it doesn’t take much imagination to do the same thing with en-
coder ticks (using a lastEncoder value)

12.4. Exercises

1. Make a program that ramps your motor to full speed (.25 for 250ms, .50
for 250ms, .75 for 250ms, 1.0) and goes at full speed until the touch
sensor is pressed.

2. Make a program that turns the motor until the distance sensor is less
than 10cm OR 5 seconds has passed and then turns the servo.

93

13. Arrays

An array can hold a fixed number of values of one type. Imagine that we had
four motors on our drive train. Instead of code like:

DcMotor motoril;
DcMotor motor2;
DcMotor motor3;
DcMotor motor4;

we could have:

DcMotor[] motors = new DcMotor[4]

The pattern is:

variableType[] variableName = new variableType[arraySize];

We can access each motor with an index. The index of an Array start with an
index of 0. So it might look like this:

motors[0] = hwMap.get(DcMotor.class, "front_left");
motors[1] = hwMap.get(DcMotor.class, "front_right");
motors[2] = hwMap.get(DcMotor.class, "back_left");
motors[3] = hwMap.get(DcMotor.class, "back_right");

This may seem interesting, but not all that useful until you start using other
things you have learned

void stopAllMotors(){
for(int i = 0; i < 4; i++){
motors[i].setPower(0.0);

This is done so often that Java has a cool shortcut for it. This is called the
for..each

void stopAllMotors() {
for(DcMotor motor : motors){
motor.setPower(0.0);

95

—

® N O gk w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

13. Arrays

The format here is for(variableType variableName : arrayName)
Below is an example op mode using for

Listing 13.1: ArrayOpMode. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class ArrayOpMode extends OpMode {
String[] words = {"Zeroth", "First", "Second", "Third", "Fourth", "Fifth", "<&
— Infinity"};
int wordIndex;
double DELAY SECS = 0.5;

double nextTime;

@Override
public void init() {
wordIndex = 0;

@Override
public void loop() {
if (nextTime < getRuntime()) {
wordIndex++;
if (wordIndex >= words.length) {
wordIndex = words.length - 1;
}
nextTime = getRuntime() + DELAY_SECS;

}

telemetry.addLine(words[wordIndex]) ;

13.1. ArraylList

This is all great, but an array can’t grow or shrink in size. For that there is
ArrayList.

ArrayList<int> items = new ArrayList<>();

96

13.2. Exercises

The angle brackets are new. That means the type is a “Generic’. What
that means is that you specify what type the class uses when you define your
object. So this is creating an ArrayList that holds integers. (It could be any
type including classes)

A few common methods:

items.add(4); // this adds this element to the end of the list
items.get(index); // returns the element at the index of the list (starts at 0)
items.clear(); // removes all items from list

items.size(); // returns the number of elements in the list

ArrayList<int> secondList = new ArrayList<>();

secondList.add(5);

secondList.add(6);

items.addAll(secondList); // adds all elements in second list to first list

13.1.1. Making your own generic class

Making generic classes is not done much in FTC, but I'll include it here for
completeness

public class MyClass<T>{
private T member;
public void set(T var) { member = var; }
public T get() { return member; }

Everywhere that T is gets replaced when you use the class.

13.2. Exercises

1. Modify the opMode to send the chorus of a song you know at a fixed rate
on telemetry. Once it gets to the end, it should send it again.

2. Modify your solution for exercise 1 to use ArrayList<String> instead of
arrays.

97

© 0 N O gk W N =

—_ =
—~ O

© 0 N O Uk W N =

—_ = =
N = O

14. Inheritance

In Java, when you create a class it always “inherits” from a class. If you don’t
use the extends keyword then it is inheriting from the object class in Java. So
what does this really do?

Let’s start with a simple example and then we’ll show how it can be useful
in FTC. (We are going to put all of these in the org.firstinspires.ftc.teamcode
package (directory))

Listing 14.1: SupercClass. java

package org.firstinspires.ftc.teamcode;

public class SuperClass {

public String a() {
return "a";

}

public String b() {
return "b";

}

Listing 14.2: childClass. java

package org.firstinspires.ftc.teamcode;

public class ChildClass extends SuperClass {
@Override

public String a() {
return "A";

}

public String c() {

return "c";

}

Listing 14.3: simpleInheritance. java

99

© 0 N O Uk W N =

LT T N T S
A D N - O © ® N O U os W N o~ O

14. Inheritance

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class SimpleInheritance extends OpMode {
SuperClass super_obj = new SuperClass();
ChildClass child_obj = new ChildClass();

@Override

public void init() {
telemetry.addData("Parent a", super_obj.a());
telemetry.addData("Parent b", super_obj.b());
telemetry.addData("Child a", child_obj.a());
telemetry.addData("Child b", child_obj.b());
telemetry.addData("Child c¢", child_obj.c());

@Override
public void loop() {

Can you guess what will show up on the telemetry screen? Try it. Were you

right?

You can think about inheritance as your new class con-
taining all of the super class (often called “parent”) plus
its new stuff. This is shown in the diagram on the right.
If you have a class method with the exact same name
and parameters, then it will replace it. You should put
an @Override annotation on it so that everyone knows
that was intentional. (You actually don’t have to but it

is good practice to do it.)

14.1. Isa vs. hasa

ChildClass

SuperClass

Object

So now there is a question. If you can get the contents of another class by
either deriving from it or having it as a class member, which should you do?

100

© 0 N O g ok W N =

e e
N o ao o W N~ O

14.2. So why in the world would you use this?

This is typically called “isa” vs “hasa” (short for is a and has a) So you should
derive from it if your class is of that type, but include it if you simply have it
as a class member if it just just one of the things you have. Generally I like to
start having it as a class member and only derive from another class if that is
really clearly what I need to do.

14.2. So why in the world would you use this?

It is time for the largest word in this book - polymorphism - that is. When you
are derived from another class you can be treated either as your class or your
superclass. This will be the longest example in the book (5 files!!), but I hope it
will help you take your programming to the next level.

We are going to make an OpMode that we can use to test out our wiring. (I
HIGHLY recommend this for your robot. Once you have it, you’ll find out how
useful it is over and over again to determine whether something is a software
or electrical/mechanical problem.

Listing 14.4: TestItem.java

package org.firstinspires.ftc.teamcode.mechanisms;

import org.firstinspires.ftc.robotcore.external.Telemetry;

abstract public class TestItem {
private String description;

protected TestItem(String description) {
this.description = description;

}

public String getDescription() {
return description;

}

abstract public void run(boolean on, Telemetry telemetry);

There is really only one new thing in this file but it shows up twice. It is the
keyWOI'd abstract.

abstract public class TestItem {

101

16

© 0 N O gk W N =

I I S T S T T T ST S S S p W
& O A& ®W K —~ S © ® N O g s W N =~ O

14. Inheritance

When abstract is before a class it means that no objects can be made of the
type of this class. (In other words it is only meant to have other classes derive
from it.)

abstract public void run(boolean on, Telemetry telemetry);

When abstract is before a class method it means that there is no body of
this class method, but classes that derive from it that aren’t abstract MUST
implement it. (OpMode defines init() and loop() as abstract methods). Why
in the world would you create a method that does nothing? Well if you require
derived classes to have it, then each class can have their own implementation
but you are guaranteed they have one.!

Listing 14.5: TestMotor.java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.DcMotor;

import org.firstinspires.ftc.robotcore.external.Telemetry;

public class TestMotor extends TestItem {
private double speed;
private DcMotor motor;

public TestMotor(String description, double speed, DcMotor motor) {
super(description);
this.speed = speed;
this.motor = motor;

@Override
public void run(boolean on, Telemetry telemetry) {
if (on) {
motor.setPower(speed) ;
} else {
motor.setPower(0.0);

}

telemetry.addData("Encoder:", motor.getCurrentPosition());

A few notes here.

There is another way to accomplish this in Java called Interfaces that we’ll discuss in
section 17.3.

102

12

© ® N O g ok W N =

_ e e e
w N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

14.2. So why in the world would you use this?

public class TestMotor extends TestItem {

You'll see here that this extends the Testitem class we made earlier.

super(description);

The super keyword refers to the class we derived from. Since this calls super ()
that is calling our superclass constructor. This is considered the correct way
to implement a constructor in a child class.

Everything else in this file we have seen before

Listing 14.6: TestAnalogInput. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.robotcore.hardware.AnalogInput;
import com.qualcomm.robotcore.util.Range;

import org.firstinspires.ftc.robotcore.external.Telemetry;

public class TestAnalogInput extends TestItem {
private AnalogInput analogInput;
private double min;
private double max;

public TestAnalogInput(String description, AnalogInput analogInput, double min, <
— double max) {
super(description);
this.analogInput = analogInput;
this.min = min;
this.max = max;

3
@Override
public void run(boolean on, Telemetry telemetry) {
telemetry.addData("Voltage: ", analogInput.getVoltage());
telemetry.addData("In Range:",
Range.scale(analogInput.getVoltage(),
0, analogInput.getMaxVoltage(),
min, max));
}

This class should look very much like TestMotor to you. The one difference is
we always read from the analogInput instead of using an if statement. (A rule

103

© 0 N O gk W N =

A W W W W W W W W W W NN NN NNNN NN = e e e e e e e
= O © ® N O O A ®W N = O © ® N O O bk WD = O O ® N O g s~ wWw N = O

14. Inheritance

I follow is you should only have to tell it to run a test if it causes something to
change)

Listing 14.7: PprogrammingBoard9. java

package org.firstinspires.ftc.teamcode.mechanisms;

import com.qualcomm.hardware.bosch.BNOO55IMU;

import com.qualcomm.robotcore.hardware.AnalogInput;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.ServoImplEx;
import com.qualcomm.robotcore.util.Range;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder;
import org.firstinspires.ftc.robotcore.external.navigation. AxesReference;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.robotcore.external.navigation.Orientation;

import java.util.ArrayList;

public class ProgrammingBoard9 {
private DigitalChannel touchSensor;
private DcMotor motor;
private double ticksPerRotation;
private ServoImplEx servo;
private AnalogInput pot;
private ColorSensor colorSensor;
private DistanceSensor distanceSensor;
private BNOO55IMU imu;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(ServoImplEx.class, "servo");
pot = hwMap.get(AnalogInput.class, "pot");

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get (DistanceSensor.class, "sensor_color_distance");

104

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

14.2. So why in the world would you use this?

imu = hwMap.get(BNOO55IMU.class, "imu");

BNOO55IMU. Parameters params = new BNOO55IMU.Parameters();
// change to default set of parameters go here
imu.initialize(params);

servo.setPwmDisable();

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

public void setServoPosition(double position) {
servo.setPosition(position);

public double getPotAngle() {
return Range.scale(pot.getVoltage(), 0, pot.getMaxVoltage(), 0, 270);

public int getAmountRed() {
return colorSensor.red();

public double getDistance(DistanceUnit du) {
return distanceSensor.getDistance(du) ;

public double getHeading(AngleUnit angleUnit) {
Orientation angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
AxesOrder.ZYX,
angleUnit);
return angles.firstAngle;

public ArrayList<TestItem> getTests() {
ArrayList<TestItem> tests = new ArrayList<>();
tests.add(new TestMotor("PB Motor", 0.5, motor));

105

87
88
89
90

84

85

86
87

88

© 0 N O Uk W N =

e e
a s~ W N = O

14. Inheritance

tests.add(new TestAnalogInput("PB Pot", pot, 0, 270));
return tests;

You’'ll notice that this has a new method at the end of it.

public ArrayList<TestItem> getTests() {

This says we will return an ArrayList containing elements of type TestItem

ArrayList<TestItem> tests = new ArrayList<>();

Here we create the variable tests of type ArrayList<TestItem> and assign a
newarrayList to it. The <> is a shortcut since it is defined on the other side of
our assignment.

tests.add(new TestMotor("PB Motor", 0.5, motor));
tests.add(new TestAnalogInput("PB Pot", pot, 0, 270));

Here we add our two new tests to it. Note that we had to have the new keyword
and this calls their constructor. Also note that if we had three motors, we
wouldn’t need 3 classes - we would just have 3 copies of the line tests.add(new
TestMotor. ... with a different description, speed, and motor variable.

return tests;

and we return our list of tests.
Now for our OpMode

Listing 14.8: Testwiring. java

package org.firstinspires.ftc.teamcode.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard9;
import org.firstinspires.ftc.teamcode.mechanisms.TestItem;

import java.util.ArrayList;

@TeleOp

public class TestWiring extends OpMode {
ProgrammingBoard9 board = new ProgrammingBoard9();
ArrayList<TestItem> tests;
boolean wasDown, wasUp;

106

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

14
15
16

14.2. So why in the world would you use this?

int testNum;

@Override

public void init() {
board. init(hardwareMap) ;
tests = board.getTests();

@Override

public void loop() {
// move up in the list of test
if (gamepadl.dpad_up && !wasUp) {

testNum--;
if (testNum < 0) {

testNum = tests.size() - 1;
}

3
wasUp = gamepadl.dpad_up;

// move down in the list of tests
if (gamepadl.dpad_down && !wasDown) {
testNum++;
if (testNum >= tests.size()) {
testNum = 0;

}

wasDown = gamepadl.dpad_down;

//Put instructions on the telemetry

telemetry.addLine("Use Up and Down on D-pad to cycle through choices");
telemetry.addLine("Press A to run test");

//put the test on the telemetry

TestItem currTest = tests.get(testNum);

telemetry.addData("Test:", currTest.getDescription());

//run or don’t run based on a

currTest.run(gamepadl.a, telemetry);

A few things to point out here that I hope will inspire you.

ArrayList<TestItem> tests;
boolean wasDown, wasUp;
int testNum;

107

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

45
46

47
48
49

51

14. Inheritance

Our list of tests as a member variable, wasbown and wasUp (like in section 12.1)
and testNum to keep track of which test number we are on. For wasbown and
wasUp, you see a shortcut where if you have multiple variables of the same type
you can define them together with a comma.

// move up in the list of test
if (gamepadl.dpad_up && !wasUp) {
testNum--;
if (testNum < 0) {
testNum = tests.size() - 1;

b
wasUp = gamepadl.dpad_up;

// move down in the list of tests
if (gamepadl.dpad_down && !wasDown) {
testNum++;
if (testNum >= tests.size()) {
testNum = 0;

}

wasDown = gamepadl.dpad_down;

This uses the gamepadl.dpad_up and gamepadl.dpad_down to let us scroll
through the list of tests. (Right now there are only 2 but it should give the idea).
We made the decision to “wrap” around, but you could make the decision to
not wrap. It is up to you.

telemetry.addLine("Use Up and Down on D-pad to cycle through choices");
telemetry.addLine("Press A to run test");

We haven’t used telemetry.addLine before but it is just like telemetry.addpata
except it only has one parameter.

//put the test on the telemetry
TestItem currTest = tests.get(testNum);
telemetry.addData("Test:", currTest.getDescription());

This gets the test and then sends its description after “Test” with telemetry
so the driver station can see what test they will be running.

currTest.run(gamepadl.a, telemetry);

run() takes a boolean for whether to run the test or not. We just pass in
gamepad1.a directly here.

108

14.3. Exercises

14.3. Exercises

1. Add a test for the touchSensor. you’ll need a TestDigitalChannel class and
add it to the getTests() method in ProgrammingBoard. (No change needed
to OpMode)

2. Add a test for the servo, you'll need a TestServo class - hint your construc-
tor probably needs an “on” value and an “off” value for the servo. You'll
also need to add it to the getTests()

3. Change ProgrammingBoard2 through ProgrammingBoard9 to derive from
the one before it (ie, ProgrammingBoard2 extends ProgrammingBoard1)
adding only what is necessary each time. Make sure all your OpModes
still work!! (Hint: you’ll have to change private members to protected so
the child can access it)?2

2The reason we didn’t do this in the book is that you would likely only have the most recent
version of a mechanism in your code instead of multiple versions.

109

15. Javadoc

We talked earlier about a special kind of comment called a Javadoc. There are

several huge benefits from commenting this way. The FTC SDK is commented
in this way and that is what generates the documentation.

1. Android Studio will pick it up and give help to people using your classes
2. Autogenerating documentation that will amaze the judges
There are 3 places you can put a Javadoc comment.
1. Before your class
2. Before each class member

3. Before each class method

A Javadoc comment looks like this:
/ *

*

This is a javadoc comment

*/

/

If you write your class method declaration first, and then type in a /** above

it then it will automatically put eparam for each parameter you have and a
ereturn if your method returns anything.

* %

*/

private double getHeading(AngleUnit angleUnit) {

* gets our imu heading

*

*

*

@param angleUnit this determines the angle unit (degrees/radians) that it will <>
— return in

@return returns the current angle with the offset in the angleUnit specified

Orientation angles;

angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
AxesOrder.ZYX,
angleUnit);

return angles.firstAngle;

111

15. Javadoc

If you don’t have anything more to say than the name,
don’t put in a comment. (For example - here is a BAD
comment)

/* DO NOT DO THIS!!! - BAD EXAMPLE!! */

|-

* This is the ProgrammingBoard class

*/

public class ProgrammingBoard{

After you have done this, in Android Studio go to Tools... Generate JavaDoc...
and you’ll see a dialog like this:

File 'ProgrammingBoard9.java’

Custom scope Module "Tea

Outpit dires

Le
Other command line amguments:
Maximum heap b):
v| Open generated documentation in browser

? Cancel

A few changes that I recommend:

1. Do it just on Module "TeamCode’

2. Go ahead and tell it to generate the documentation on everything

112

15.1. Exercises

3. Make sure you put it in its own directory because it creates a lot of files

15.1. Exercises

1. Add Javadoc comments to your ProgrammingBoard class

2. Add Javadoc comments to your TestMotor class (Because once you have
TestWiring all working for your robot you’ll want to show it to judges)

113

16. Finding things in FTC SDK

So far, I have told you about things that are in the FTC SDK. But there is lots
more that we haven’t looked at. So now let’s teach you how to go looking for
yourself.

Change the Project part to “Project” (It has been “An-
droid” and you’ll probably want to change it back after
this) Look under doc>javadoc and right click on “in-
dex.html”

Select Open in Browser and pick a browser you have
on your computer

You’'ll probably notice that this looks just like the Javadoc you created in
chapter 15. Sure enough, that is what they use to create the documentation
for the FTC SDK as well

For example - Look through the All Classes until you get to Telemetry in the
lower left portion of the screen. Click on it. Then the main part of the browser
will have more information out about our old friend. Wait did you see that
there is a speak() method??

16.1. Exercise

1. Write an opMode that uses the telemetry.speak() method

115

16. Finding things in FTC SDK

2. Look through the documentation and find something we haven’'t done
before and try it

116

© 0 N O Uk W N =

NN N = = e e e e e e e e
@ N = O © ®» N O U oks W N = O

10

17. A few other topics

This is a place for a few other topics that I thought were important to mention
but didn’t really fit anywhere else

17.1. Make telemetry prettier

There are some additional ways we can make our telemetry easier to see. We’ll
mention a few of them here.

Listing 17.1: MoreTelemetry. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class MoreTelemetry extends OpMode {
@Ooverride
public void init() {
telemetry.addData("Run time", "%0.2f", getRuntime());

@Override
public void loop() {
telemetry.addData("Right Joystick",
"x:%+0.2f y:% 0.2f", gamepadl.right_stick_x,
gamepadl.right_stick_y);

telemetry.addLine("Left joystick | ")
.addData("x", gamepadl.left_stick_x)
.addData("y", gamepadl.left_stick_y);

Let’s talk through the three different telemetry examples here.

telemetry.addData("Run time", "%0.2f", getRuntime());

117

15
16
17

19
20
21

17. A few other topics

Here is our old friend addpata but this time the string looks weird and there
is another parameter. The string is called a format string. It can have text and
values. Every value is started with a % sign and has how to show the number.
Below are the most common ones for FTC.

| Conversion | Description \
’b’, ’B’ boolean - if the argument isn’t a
boolean, then it will show true unless
null
'd’ decimal - for integers
£ decimal number - for floating point
(float and double)
% show a literal "%’ character

For f, you can give it a precision after the . which is the maximum number
of digits to show. If you want it to always show that number of digits (zero pad)
then put o. 2 for example.

telemetry.addData("Right Joystick",
"x:%+0.2f y:% 0.2f", gamepadl.right_stick_x,
gamepadl.right_stick_y);

Here is an example where we are showing more than one value on the same
line. The +is a flag saying to always show the sign (without it only shows the
sign if it is negative.) The space on the second one says to have a space if
positive instead of the positive sign. (The reason you might want this is so that
the numbers don’t jump as the negative sign comes in place.)

telemetry.addLine("Left joystick | ")
.addData("x", gamepadl.left_stick_x)
.addData("y", gamepadl.left_stick_y);

This has another way of showing multiple things per line by putting multiple
addData after an addLine

17.2. Math class

The java Math class has a lot of useful methods in it. They are all static so you
don’t need an object of type Math. Here is an example class to handle polar
coordinates

Listing 17.2: polar. java

118

© 0 N O Uk W N =

[T N R R S
= O © ® N O Uk~ W N = O

17.2. Math class

package org.firstinspires.ftc.teamcode;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;

public class Polar {
double angle;
double magnitude;

public Polar(double x, double y) {
angle = Math.atan2(y, x);
magnitude = Math.hypot(x, y);

public double getAngle(AngleUnit angleUnit) {
return angleUnit.fromRadians(angle) ;

public double getMagnitude() {
return magnitude;

You'll notice that we have a constructor that takes in x and y and converts it
to polar coordinates.

The method called getAngle uses the AngleUnit to convert. As a bonus An-
gleUnit guarantees results to be normalized.

Some useful methods in this class: (all trig functions are in radians)

Math.abs(a) // take the absolute value

Math.acos(a) // take the arc cosine

Math.asin(a) // take the arc sin

Math.atan(a) // take the arc tan

Math.atan2(x, y) // This returns the angle theta from conversion of rectangular (x,y)<>
<~ to polar (r, theta)

Math.copySign(magnitude, sign) // return s the first argument with the sign (<
— positive or negative) of the second

Math.cos(a) // take the cos

Math.hypot(x, y) // return the sqrt(x/"2 + y"2)

Math.max(a, b) // returns the greater of a and b

Math.min(a, b) // returns the smaller of a and b

Math.random() // returns a double value with a positive sign greater than or equal <
<> to 0.0 and less than 1.0

Math.signum(d) // returns -1.0 if d < 0, 0.0 if d == 0, 1.0 if d > 0

Math.sin(a) // take the sin

Math.sqrt(a) // take the square root

119

a b w N =

® N OO g o W N =

17. A few other topics

Math.tan(a) // take the tangent
Math.toDegrees(radians) // convert radians to degrees - I prefer using AngleUnit
Math.toRadians(degrees) // convert degrees to radians - I prefer using AngleUnit

17.3. Interfaces (implements)

Interfaces are similar to inheritance but are subtly different. Whereas a child
class is a type of its super class, an interface is instead a “contract” that a class
that implements it has to have certain method(s). A class can both be derived
from a super class and implement multiple interfaces.

Let’s give an example!, first showing how we create an interface:

Listing 17.3: sampleInterface. java

package org.firstinspires.ftc.teamcode;

public interface SampleInterface {
public String getName();

and then here is a class that implements the interface

Listing 17.4: sampleClass.java

package org.firstinspires.ftc.teamcode;

public class SampleClass implements SampleInterface {
@Override
public String getName() {
return "SampleClass";

If your class says it implements an interface, but it doesn’t have all of the
methods in it then the compiler will give an error.

17.3.1. When to use an interface instead of an abstract class?

The short version is that if you need code shared then it should be an abstract
class because in an interface, each class that implements it will have to have
the code in it again.

Yes, this is a contrived example, because you can always get the full name of a
class in Java with this.getClass().getName() and just the last part of the class with
this.getClass().getSimpleName ()

120

17.4. final

Another way to think about it is that a class can only inherit from one class,
but it can implement multiple interfaces.

My personal opinion is that you are probably better off using simple inheri-
tance unless you have something you need to do that requires multiple inter-
faces.

17.4. final

final is a keyword that can be applied to a variable, a method or a class.

final int THRESHOLD = 5;

* final applied to a variable makes the variable a constant. Modifying it
later will cause a compiler error. Should be initialized at this point (be-
cause you can’t assign to it later.) By convention, we name these “vari-
ables” in ALL_CAPS to signify that they are constants.

public class SuperClass{
public String a(){
return "a";
}
final public String b(){
return "b";
}
}

* final applied to a method means that even if a new class extends this
class, this method cannot be overridden

final class A{
// methods and members

}

* final applied to a class means that no class can extend this one.

17.5. Exercises

1. Use the Polar class to make a new OpMode that reports the joysticks on
the gamepad in polar coordinates - show the angle in degree

121

17. A few other topics

2. Use formatting so the telemetry for exercise 1 always shows the positive
or negative sign and no decimals

3. Add the final keyword to various places to cause compiler errors so you
can see what they look like

122

A. Making your own Programming Board

The ProgrammingBoard has a number of electrical components:

* REV Expansion Hub (http://www.revrobotics.com/rev-31-1153/)

REV Potentiometer (http://www.revrobotics.com/rev-31-1155/)

REV Color Sensor (http://www.revrobotics.com/rev-31-1557/)

REV Touch Sensor (http://www.revrobotics.com/rev-31-1425/)

REV 40:1 HD Hex Motor (http://www.revrobotics.com/rev-41-1301/)

REV SRS Servo (http://www.revrobotics.com/rev-41-1097/)

It should be connected in the following way:

REV 40:1 HD Hex Motor - Power and encoder to Motor O

REV Potentiometer - connected to Analog/Digital O:1

REV Color Sensor - connected to I12C 1

REV Touch Sensor - connected to Analog/Digital 2:3
* REV SRS Servo - connected to Servo O

Here is an example CAD from one of my students! of a way to assemble it using
all mechanical parts from the REV FTC Kit.

!Thanks, Eric!!

123

http://www.revrobotics.com/rev-31-1153/
http://www.revrobotics.com/rev-31-1155/
http://www.revrobotics.com/rev-31-1557/
http://www.revrobotics.com/rev-31-1425/
http://www.revrobotics.com/rev-41-1301/
http://www.revrobotics.com/rev-41-1097/

A. Making your own Programming Board

124

© ® N o g ok W N =

e e
N oo aos W N o~ O

—

a &~ W N

B. LinearOpMode

B.1. What is it?

LinearOpMode is a class derived from opmode that instead of having the five meth-
ods of an opMode has only one. runopMode(). Everything then occurs in that
method. You are now responsible to update telemetry whenever you want
it sent to the driver station, waiting for the Start button to be pressed, and
checking to see if the opModeTIsActive()

Here is our HelloWorld as a LinearopMode

Listing B.1: HelloworldLinear. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class HelloWorldLinear extends LinearOpMode {

@Override

public void runOpMode() {
telemetry.addData("Hello", "World");
telemetry.update();
waitForStart();
while (opModeIsActive()) {

}

So you can compare, here it is again from chapter 1

Listing B.2: Helloworld. java

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

125

© o N o

11
12
13
14
15
16
17

B. LinearOpMode

@TeleOp()
public class HelloWorld extends OpMode {
@Override
public void init() {
telemetry.addData("Hello", "World");
}

@Override
public void loop() {

}

B.2. Should you use it?

I think that you are better off using OpMode instead of LinearOpMode but
since a lot of the sample code and many (most?) teams do I think it is worth
elaborating here why that is my opinion so you can make your own decision.
There are teams I highly respect that use LinearOpMode so even if you disagree
we can still be friends. :-)

B.2.1. Benefits of LinearOpMode

The reason LinearopMode exists is that it allows code to be written that is more
similar to how code is often taught. Instead of using state machines like we did
in chapter 12, it allows simple code like:

board.setMotorSpeed(0.5);
while(!board. touchSensorPressed()) {
}

board.setMotorSpeed(0.0);

as opposed to code like:

switch(state) {
case State.BEGIN:
board.setMotorSpeed(0.5);
state = State.WAIT_FOR_TOUCH;
break;
case State.WAIT_FOR_TOUCH:

126

B.2. Should you use it?

if(board. touchSensorPressed) {
state = State.STOP;
}
break;
case State.STOP:
board.setMotorSpeed(0.0);
break;

The other large benefit is much of the sample code available online is written
this way.

B.2.2. Drawbacks of LinearOpMode

1. LinearopMode is derived from opMode. If you look at the implementation
of LinearopMode, the start() method creates a thread and calls the user
class runopmode (). This means you have now introduced another thread
into the system. Instead of variables like gamepad being updated between
calls to your OpMode, they could be updated at anytime.

2. Your code is all in one main control method instead of being broken out
into logical methods for the five methods in the OpMode. For both Op-
Mode and LinearOpMode you should use class methods to break your
code out into logical pieces to make it easier to read and maintain. Many
professional programmers get nervous whenever a method is longer than
fits on one screen.

3. You also are no longer protected from a loop taking too long so you don’t
respond in time to the driver station.

4. State machines are typically used in commercial embedded projects. Why
not choose to learn how to do that now?

127

© 0 N O gk W N =

e e e
N o a ok W N~ O

—

© 0 N O g ok W N

C. Sample Solutions

These are here if you get stuck, but they are not the only way to solve the

exercises.

C.1. Chapter 1 Solutions

Listing C.1: Exercise_1_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp
public class Exercise_1_1 extends OpMode {
@Override
public void init() {
telemetry.addData("Hello", "Alan");

@Override
public void loop() {

Listing C.2: Exercise_1_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

@Autonomous

public class Exercise_1_2 extends OpMode {
@Override
public void init() {

129

10
11
12
13
14
15
16
17

© 0 N O Uk W N =

o e e e T S T S S S
© ® N O g o W D = O

—

0 N o a s W N

C. Sample Solutions

telemetry.addData("Hello", "Alan");

@Override
public void loop() {

C.2. Chapter 2 Solutions

Listing C.3: Exercise_2_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class Exercise_2_1 extends OpMode {
@Override
public void init() {
String myName = "Your Name";

telemetry.addData("Hello", myName);

@Override
public void loop() {

Listing C.4: Exercise_2_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class Exercise_2_2 extends OpMode {
@Override

130

10
11
12
13
14
15
16
17
18
19
20
21

© ® N o g W N =

e T e e
N o g W N~ O

—

oA W N

C.3. Chapter 3 Solutions

public void init() {
String myName = "Your Name";
int grade = 38;

telemetry.addData("Hello", myName);

telemetry.addData("Grade", grade);

@Override
public void loop() {

C.3. Chapter 3 Solutions

Listing C.5: Exercise_3_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class Exercise_3_1 extends OpMode {
@Override
public void init() {
}

@Override

public void loop() {
telemetry.addData("Right stick x", gamepadl.right_stick_x);
telemetry.addData("Right stick y", gamepadl.right_stick_y);

Listing C.6: Exercise_3_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

131

© o N o

11
12
13
14
15
16

© 0 N O gk W N =

e e e e
N o g o~ W N o~ O

© ® N O g ok W N

—_ =
- O

C. Sample Solutions

@TeleOp()

public class Exercise_3_2 extends OpMode {
@Override
public void init() {
}

@Override
public void loop() {
telemetry.addData("B button", gamepadl.b);

Listing C.7: Exercise_3_3.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class Exercise_3_3 extends OpMode {
@Override
public void init() {
3

@Override
public void loop() {
telemetry.addData("Diff left y and right y",
gamepadl.left_stick_y - gamepadl.right_stick_y);

Listing C.8: Exercise_3_4.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()

public class Exercise_3_4 extends OpMode {
@Override
public void init() {
}

132

12
13
14
15
16
17

© ® N O g ok W N =

L S S S Sy
N -~ S © ® N & O s~ W N ~ O

—

N O g WwN

C.4. Chapter 4 Solutions

@Override
public void loop() {
telemetry.addData("sum triggers",
gamepadl.left_trigger + gamepadl.right_trigger);

C.4. Chapter 4 Solutions

Listing C.9: Exercise_4_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp

public class Exercise_4_1 extends OpMode {
@Override
public void init() {

@Override
public void loop() {
double fwdSpeed = gamepadl.left_stick_y;

if (!gamepadl.a) {
fwdSpeed *= 0.5;
}
telemetry.addData("Forward Speed", fwdSpeed);

Listing C.10: Exercise_4_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp
public class Exercise_4_2 extends OpMode {

133

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

© 0 N O gk W N =

e e e e e v
© 0 N O g s~ w N = O

C. Sample Solutions

@Override
public void init() {

@Override

public void loop() {
double ySpeed = gamepadl.left_stick_y;
double xSpeed = gamepadl.left_stick_x;

if (gamepadl.a) { // crazy mode
ySpeed = gamepadl.left_stick_x;
xSpeed = gamepadl.left_stick_y;

b
telemetry.addData("X Speed", xSpeed);

telemetry.addData("Y Speed", ySpeed);

C.5. Chapter 5 Solutions

Listing C.11: RobotLocation_5_1.java

package org.firstinspires.ftc.teamcode.solutions;

public class RobotLocation_5_1 {
double angle;

public RobotLocation_5_1(double angle) {
this.angle = angle;

public double getHeading() {

double angle = this.angle;

while (angle > 180) {
angle -= 360;

}

while (angle < -180) {
angle += 360;

3

return angle;

134

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

© 0 N O g ok W N =

LT T N S T N
A B N =~ O © 0 N O g A W N = O

C.5. Chapter 5 Solutions

@Override
public String toString() {
return "RobotLocation: angle (" + angle + ")";

public void turn(double angleChange) {
angle += angleChange;

public void setAngle(double angle) {
this.angle = angle;

public double getAngle() {
return angle;

Listing C.12: UseRobotLocationOpMode_5_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp
public class UseRobotLocationOpMode_5_1 extends OpMode {
RobotLocation_5_1 robotLocation = new RobotLocation_5_1(0);

@Override
public void init() {
robotLocation.setAngle(0);

@Override
public void loop() {
if (gamepadl.a) {
robotLocation.turn(0.1);
} else if (gamepadl.b) {
robotLocation.turn(-0.1);
3
telemetry.addData("Location", robotLocation);
telemetry.addData("Heading", robotLocation.getHeading());

135

25
26
27

© 0 N O g ok W N =

W W W W W W W W W WM NN NDNNDNDNNDN = e e e e e
© 0 N O O bk @ N = O © ® N O O bk W N = O © 0 N O G bk w D= O

C. Sample Solutions

telemetry.addData("Angle", robotLocation.getAngle());

Listing C.13: RobotLocation_5_2.java

package org.firstinspires.ftc.teamcode.solutions;

public class RobotLocation_5_2 {
double angle;
double x;

public RobotLocation_5_2(double angle) {
this.angle = angle;

public double getHeading() {
double angle = this.angle;
while (angle > 180) {
angle -= 360;
}
while (angle < -180) {
angle += 360;

}

return angle;
}
@Override

public String toString() {
return "RobotLocation: angle (" + angle + ") x (" + x + ")";

public void turn(double angleChange) {
angle += angleChange;

public void setAngle(double angle) {
this.angle = angle;

public double getAngle() {
return angle;

public double getX() {

136

40
41
42
43
44
45
46
47
48
49
50

© 0 N O Uk W N =

W W ONNNNN N NN NN e e e e e e e e e
= O © 0 N O O A W N = O © ® N O U b W D = O

C.5. Chapter 5 Solutions

return x;

public void changeX(double change) {
x += change;

public void setX(double x) {
this.x = x;

Listing C.14: useRobotLocationOpMode_5_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp
public class UseRobotLocationOpMode_5_2 extends OpMode {
RobotLocation_5_2 robotLocation = new RobotLocation_5_2(0);

@Override
public void init() {
robotLocation.setAngle(0);

@Override
public void loop() {
if (gamepadl.a) {
robotLocation.turn(0.1);
} else if (gamepadl.b) {
robotLocation. turn(-0.1);
}
if (gamepadl.dpad_left) {
robotLocation.changeX(-0.1);
} else if (gamepadl.dpad_right) {
robotLocation.changeX(0.1);
}
telemetry.addData("Location", robotLocation);
telemetry.addData("Heading", robotLocation.getHeading());

137

© 0 N O g ok W N =

AR A s W W W W W W W W W W NN DNDNNDNDNNDN e e e e e e e
W M= O © ® N O O A W = O © ® N O O bk W N = O O N O g BN~ wWw N~ O

C. Sample Solutions

Listing C.15: RobotLocation_5_3.java

package org.firstinspires.ftc.teamcode.solutions;

public class RobotLocation_5_3 {
double angle;
double x, Vy;

public RobotLocation_5_3(double angle) {
this.angle = angle;

public double getHeading() {

double angle = this.angle;

while (angle > 180) {
angle -= 360;

3

while (angle < -180) {
angle += 360;

}

return angle;

@Override
public String toString() {
return "RobotLocation: angle (" + angle + ") pos (" + x + "," +y + ")";

public void turn(double angleChange) {
angle += angleChange;

public void setAngle(double angle) {
this.angle = angle;

public double getAngle() {
return angle;

public double getX() {
return x;

public void changeX(double change) {

138

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

© 0 N O Uk W N =

P T S T T S S S S S SV S
- O © ® N ® O & W N =~ O

C.5. Chapter 5 Solutions

x += change;

public void setX(double x) {
this.x = x;

public double getY() {
return y;

public void changeY(double change) {
y += change;

public void setY(double y) {
this.y = y;

Listing C.16: useRobotLocationOpMode_5_3.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp
public class UseRobotLocationOpMode_5_3 extends OpMode {
RobotLocation_5_3 robotLocation = new RobotLocation_5_3(0);

@Override
public void init() {
robotLocation.setAngle(0);

@Override
public void loop() {
if (gamepadl.a) {
robotLocation.turn(0.1);
} else if (gamepadl.b) {
robotLocation. turn(-0.1);

139

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

© 0 N O gk W N =

LT S T S S S
- O © ® N O O k& W N —~ O

C. Sample Solutions

3
if (gamepadl.dpad_left) {

robotLocation.changeX(-0.1);

} else if (gamepadl.dpad_right) {
robotLocation.changeX(0.1);

}

if (gamepadl.dpad_up) {
robotLocation.changeY(-0.1);

} else if (gamepadl.dpad_down) {
robotLocation.changeY(0.1);

}

telemetry.addData("Location", robotLocation);

telemetry.addData("Heading", robotLocation.getHeading());

C.6. Chapter 6 Solutions

Listing C.17: ProgrammingBoard_6_1. java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoard_6_1 {
private DigitalChannel touchSensor;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public boolean isTouchSensorReleased() {
return touchSensor.getState();

140

© 0 N O g ok W N =

e e e e e v
© 0 N O g s~ w N» = O

© ® N o g ok W N =

T T T S S U U
N~ O © ® N ® O k& ® N ~ O

C.6. Chapter 6 Solutions

Listing C.18: TouchSensorOpMode _6_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class TouchSensorOpMode_6_1 extends OpMode {
ProgrammingBoard_6_1 board = new ProgrammingBoard_6_1();

@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
telemetry.addData("Touch sensor Released", board.isTouchSensorReleased());

Listing C.19: TouchSensorOpMode _6_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class TouchSensorOpMode_6_2 extends OpMode {
ProgrammingBoard_6_1 board = new ProgrammingBoard_6_1();

@Override
public void init() {
board. init(hardwareMap) ;

3
@Override
public void loop() {
String touchSensorString = "Not Pressed";
if (board.isTouchSensorPressed()) {
touchSensorString = "Pressed";
}
telemetry.addData("Touch sensor", touchSensorString);
}

141

C. Sample Solutions

23‘}

C.7. Chapter 7 Solutions

Listing C.20: programmingBoard_7_1.java

—

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoard_7_1 {
private DigitalChannel touchSensor;

© 0 N o g ok W N

private DcMotor motor;

—_
=}

private double ticksPerRotation;

U
N =

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();

[e T B B R
S O ® N o g oA~ W
—

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

NNNN
s W N =
—

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

NN NN
o N o a
—~~

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

W W W N
N —~ O ©
—~~

public void setMotorZeroBehavior(DcMotor.ZeroPowerBehavior zeroBehavior)

o]
w

motor.setZeroPowerBehavior(zeroBehavior);

W W

a e

-
R

142

© 0 N O g ok W N =

W N NNNNNNNN N e e e e e e e e
S © ® N O O s W N = O © 0 N O g b~ w D= O

© ® N O g ok W N

—_ =
- O

C.7. Chapter 7 Solutions

Listing C.21: MotorOpMode_7_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;

@TeleOp()
public class MotorOpMode_7_1 extends OpMode {
ProgrammingBoard_7_1 board = new ProgrammingBoard_7_1();

@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
double motorSpeed = gamepadl.left_stick_y;

board.setMotorSpeed(motorSpeed) ;

telemetry.addData("speed", motorSpeed);

if (gamepadl.a) {
board. setMotorZeroBehavior(DcMotor.ZeroPowerBehavior.BRAKE) ;
telemetry.addData("Zero", "Brake");

} else if (gamepadl.b) {
board.setMotorZeroBehavior(DcMotor.ZeroPowerBehavior. FLOAT) ;
telemetry.addData("Zero", "Float");

Listing C.22: MotorOpMode_7_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class MotorOpMode_7_2 extends OpMode {

ProgrammingBoard_7_1 board = new ProgrammingBoard_7_1();

@Override
public void init() {

143

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

© 0 N O Uk W N =

I B T v I T
S © ® N O g b~ w N = O

C. Sample Solutions

board. init(hardwareMap) ;

double squareInputWithSign(double input) {
double output = input * input;
if (input < 0) {
output = output * -1;

¥

return output;
3
@Override

public void loop() {
double motorSpeed = squareInputWithSign(gamepadl.left_stick_y);

board.setMotorSpeed(motorSpeed) ;

C.8. Chapter 8 Solutions

Listing C.23: ProgrammingBoard_8_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

public class ProgrammingBoard_8_1 {
private DigitalChannel touchSensor;
private DcMotor motor;
private double ticksPerRotation;
private Servo servo;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");

144

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

© 0 N O gk W N =

T N e
- O © ® N O O s~ W N = O

C.8. Chapter 8 Solutions

servo.setDirection(Servo.Direction.REVERSE) ;

servo.scaleRange(0.5, 1.0);

}

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

}

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

}

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

}

public void setServoPosition(double position) {
servo.setPosition(position);

}

}

Listing C.24: servoGamepadOpMode_8_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard5;

@TeleOp()
public class ServoGamepadOpMode_8_2 extends OpMode {
ProgrammingBoard5 board = new ProgrammingBoard5();

@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
board.setServoPosition(gamepadl.left_trigger);

145

© 0 N O gk W N =

A W W W W W W W W W W NN NN NNNN NN = e e e e e e e
= O © ® N O O A ®W N = O © ® N O O bk WD = O O ® N O g s~ wWw N = O

C. Sample Solutions

C.9. Chapter 9 Solutions

Listing C.25: programmingBoard_9_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.
import com.qualcomm.
import com.qualcomm.
import com.qualcomm.
import com.qualcomm.
import com.qualcomm.

robotcore
robotcore
robotcore
robotcore
robotcore
robotcore

.hardware.AnalogInput;
.hardware.DcMotor;
.hardware.DigitalChannel;
.hardware.HardwareMap;
.hardware.Servo;
.util.Range;

public class ProgrammingBoard_9_1 {

private DigitalChannel touchSensor;

private DcMotor

motor;

private double ticksPerRotation;

private Servo servo;

private AnalogInput pot;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class,
touchSensor.setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");

pot = hwMap.get(AnalogInput.class, "pot");

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

public void setServoPosition(double position) {
servo.setPosition(position);

146

"touch_sensor");

42
43
44
45
46
47
48
49
50

© 0 N O gk W N =

L S T T S S SV p
W N = O © ®» N O G W N = O

1
2
3

C.10. Chapter 10 Solutions

public double getPotAngle() {

return Range.scale(pot.getvVoltage(), 0, pot.getMaxVoltage(), 0, 270);

public double getPotRange() {

return Range.scale(pot.getvVoltage(), 0, pot.getMaxVoltage(), 0, 1.0);

Listing C.26: Exercise_9_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class Exercise_9_2 extends OpMode {
ProgrammingBoard_9_1 board = new ProgrammingBoard_9_1();

@Override

public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
double potValue = board.getPotRange();

telemetry.addData("Pot Value", potvalue);

board.setServoPosition(potVvalue) ;

C.10. Chapter 10 Solutions

Listing C.27: programmingBoard_10_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.AnalogInput;

147

© 0 N o g b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

C. Sample Solutions

import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.util.Range;

import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;

public class ProgrammingBoard_10_1 {
private DigitalChannel touchSensor;
private DcMotor motor;
private double ticksPerRotation;
private Servo servo;
private AnalogInput pot;
private ColorSensor colorSensor;
private DistanceSensor distanceSensor;

public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");
pot = hwMap.get(AnalogInput.class, "pot");

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get(DistanceSensor.class, "sensor_color_distance");

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

public void setServoPosition(double position) {

148

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

© 0 N o g ok W N =

O T T T S S i U U
W N = O © 0 N O G s W N = O

C.10. Chapter 10 Solutions

servo.setPosition(position);
}
public double getPotAngle() {
return Range.scale(pot.getVoltage(), 0, pot.getMaxVoltage(), 0, 270);
}
public int getAmountRed() {
return colorSensor.red();
}
public int getAmountBlue() {
return colorSensor.blue();
}
public double getDistance(DistanceUnit du) {
return distanceSensor.getDistance(du) ;
}
}

Listing C.28: Exercise_10_1_OpMode. java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;

@TeleOp()
public class Exercise_10_1_OpMode extends OpMode {
ProgrammingBoard_10_1 board = new ProgrammingBoard_10_1();

@Override
public void init() {
board. init(hardwareMap) ;

@Override

public void loop() {
telemetry.addData("Amount blue", board.getAmountBlue());
telemetry.addData("Distance (CM)", board.getDistance(DistanceUnit.CM));
telemetry.addData("Distance (IN)", board.getDistance(DistanceUnit.INCH)) ;

149

© 0 N O g ok W N =

NNONN NN NN e e e e e e e e
N O O s W= O © 0N ook w D= O

© 0 N O Uk W N =

—
(=]

C. Sample Solutions

Listing C.29: Exercise_10_2_OpMode. java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;

@TeleOp()
public class Exercise_10_2_OpMode extends OpMode {
ProgrammingBoard_10_1 board = new ProgrammingBoard_10_1();

@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
double distanceCM = board.getDistance(DistanceUnit.CM);
if (distanceCM < 10.0) {
board.setMotorSpeed(0.0);
} else {
board.setMotorSpeed(0.5);

}
telemetry.addData("Distance (CM)", distanceCM);

C.11. Chapter 11 Solutions

Listing C.30: Exercise_11_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@TeleOp()
public class Exercise_11_1 extends OpMode {

150

11
12
13
14
15
16
17
18
19
20
21
22
23

© 0 N O gk W N =

NN NNNN NN NN = e e e e e e e e
© 0 N O O bk W N = O © N O BN W N = O

C.11. Chapter 11 Solutions

ProgrammingBoard8 board = new ProgrammingBoard8();

@Override
public void init() {
board. init(hardwareMap) ;

@Ooverride

public void loop() {
telemetry.addData("Our Heading (DEG)", board.getHeading(AngleUnit.DEGREES)) ;
telemetry.addData("Our Heading (RAD)", board.getHeading(AngleUnit.RADIANS));

Listing C.31: Exercise_11_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.util.Range;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@TeleOp()
public class Exercise_11_2 extends OpMode {
ProgrammingBoard8 board = new ProgrammingBoard8() ;

@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void loop() {
double headingDegrees = board.getHeading(AngleUnit.DEGREES) ;
double motorSpeed = Range.scale(headingDegrees, -180, 180, -1.0, 1.0);

telemetry.addData("Our Heading (DEG)", headingDegrees);
telemetry.addData("Motor Speed", motorSpeed);

board.setMotorSpeed(motorSpeed) ;

151

© 0 N O gk W N =

A W W W W W W W W W W NN NN NNNN NN = e e e e e e e
= O © ® N O O A ®W N = O © ® N O O bk WD = O O ® N O g s~ wWw N = O

C. Sample Solutions

C.12. Chapter 12 Solutions

Listing C.32: Exercise_12_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@Autonomous()
public class Exercise_12_1 extends OpMode {
enum State {
START,
QUARTER_SPEED,
HALF_SPEED,
THREE_QUARTERS_SPEED,
FULL_SPEED,
DONE

ProgrammingBoard8 board = new ProgrammingBoard8() ;
State state = State.START;
double lastStepTime;

@Override
public void init() {
board. init(hardwareMap) ;

@Override
public void start() {
state = State.START;

@Override
public void loop() {
telemetry.addData("State", state);
switch (state) {
case START:
board.setMotorSpeed(0.250);
state = State.QUARTER_SPEED;
lastStepTime = getRuntime();
break;

152

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

© ® N O g ok W N

—_ =
- O

C.12. Chapter 12 Solutions

case QUARTER_SPEED:
if (getRuntime() > lastStepTime + .250) {
board.setMotorSpeed(0.500);
state = State.HALF_SPEED;
lastStepTime = getRuntime();
}
break;
case HALF_SPEED:
if (getRuntime() > lastStepTime + .250) {
board.setMotorSpeed(0.750);
state = State.THREE_QUARTERS_SPEED;
lastStepTime = getRuntime();
}
break;
case THREE_QUARTERS_SPEED:
if (getRuntime() > lastStepTime + .250) {
board.setMotorSpeed(1.00);
state = State.FULL_SPEED;
}
break;
case FULL_SPEED:
if (board.isTouchSensorPressed()) {
board.setMotorSpeed(0.0);
state = State.DONE;
}
break;
default:
telemetry.addData("Auto", "Finished");
}
}
}

Listing C.33: Exercise_12_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;

import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.teamcode.mechanisms.ProgrammingBoard8;

@Autonomous()
public class Exercise_12_2 extends OpMode {
enum State {

153

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52

C. Sample Solutions

START,
GO_UNTIL_DISTANCE,
TURN_SERVO,

DONE

ProgrammingBoard8 board = new ProgrammingBoard8();
State state = State.START;
double lastStepTime;

@Override

public void init() {
board. init(hardwareMap) ;
state = State.START;

@Override
public void loop() {
telemetry.addData("State", state);
switch (state) {
case START:
board.setMotorSpeed(0.5);
board.setServoPosition(0.0);

resetStartTime();
state = State.GO_UNTIL_DISTANCE;
break;

case GO_UNTIL_DISTANCE:
if ((board.getDistance(DistanceUnit.CM) < 10)
=) {
board.setMotorSpeed(0.0);
state = State.TURN_SERVO;
}
break;
case TURN_SERVO:
board.setServoPosition(0.5);
state = State.DONE;
break;
default:
telemetry.addData("Auto", "Finished");

(getRuntime() > 5.0)<¢>

154

© 0 N O gk W N =

W W W W W W W W WM NDNDNDNDNDNDNDNDDN = e e e e e e
® N O g s~ W N = O © ® N O O bk W N = O O 0N O U A~ w N = O

C.13. Chapter 13 Solutions

C.13. Chapter 13 Solutions

Listing C.34: Exercise_13_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class Exercise_13_1 extends OpMode {
String[] lines = {
"Then he waddled away",
"(Wwaddle waddle)",
"Then he waddled away",
"(Wwaddle waddle waddle)",
"Then he waddled away",
"(waddle waddle)",
"’Til the very next day",
"(Bum bum bum bum bum ba-dum)"};
int lineIndex;
double DELAY SECS = 0.5;

double nextTime;

@Override
public void init() {
lineIndex = 0;

@Override
public void loop() {
if (nextTime < getRuntime()) {
lineIndex++;
if (linelIndex >= lines.length) {
lineIndex = lines.length - 1;
}
nextTime = getRuntime() + DELAY_SECS;

}

telemetry.addLine(lines[lineIndex]);

Listing C.35: Exercise_13_2.java

155

© 0 N O Uk W N =

R R R W W W W W W W W W W NN NN N NNN NN = e e e e e e e
W N = O O ® N O R WD O © ® N0 O W N = O © ® N U W N~ O

C. Sample Solutions

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import java.util.ArrayList;

@TeleOp()
public class Exercise_13_2 extends OpMode {
ArrayList<String> lines = new ArrayList<>();

int lineIndex;
double DELAY SECS = 0.5;

double nextTime;

@Override

public void init() {
lineIndex = 0;
lines.clear();
lines.add("Then he waddled away");
lines.add(" (wWwaddle waddle)");
lines.add("Then he waddled away");
lines.add(" (Waddle waddle waddle)");
lines.add("Then he waddled away");
lines.add(" (waddle waddle)");
lines.add("’Til the very next day");
lines.add(" (Bum bum bum bum bum ba-dum)");
lines.add("");

@Override
public void loop() {
if (nextTime < getRuntime()) {
lineIndex++;
if (lineIndex >= lines.size()) {
lineIndex = 0;
}
nextTime = getRuntime() + DELAY_SECS;

}

telemetry.addLine(lines.get(lineIndex));

156

© 0 N O gk W N =

N S S S
S © ® N O U A W N = O

© 0 N O gk W N =

e e e e e
® N O g oA~ W N = O

C.14. Chapter 14 Solutions

C.14. Chapter 14 Solutions

Listing C.36: TestDigitalChannel_14_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.DigitalChannel;

import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.mechanisms.TestItem;

public class TestDigitalChannel_ 14_1 extends TestItem {
private DigitalChannel digitalChannel;

public TestDigitalChannel_14_1(String description, DigitalChannel channel) {
super(description);
this.digitalChannel = channel;

@Override
public void run(boolean on, Telemetry telemetry) {
telemetry.addData("Sensor state: ", digitalChannel.getState());

Listing C.37: ProgrammingBoard 14 _1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.hardware.bosch.BNOO55IMU;

import com.qualcomm.robotcore.hardware.AnalogInput;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.util.Range;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder;
import org.firstinspires.ftc.robotcore.external.navigation. AxesReference;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.robotcore.external.navigation.Orientation;
import org.firstinspires.ftc.teamcode.mechanisms.TestAnalogInput;

157

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

C. Sample Solutions

import org.firstinspires.ftc.teamcode.mechanisms.TestItem;

import org.firstinspires.ftc.teamcode.mechanisms.TestMotor;

import java.util.ArrayList;

public class ProgrammingBoard_14_1 {

private DigitalChannel touchSensor;

private DcMotor motor;

private double ticksPerRotation;

private Servo servo;

private AnalogInput pot;

private ColorSensor colorSensor;

private DistanceSensor distanceSensor;
private BNOO55IMU imu;

public void init(HardwareMap hwMap) {

touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;

motor = hwMap.get(DcMotor.class, "motor");

motor. setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");

pot = hwMap.get(AnalogInput.class, "pot");

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get (DistanceSensor.class, "sensor_color_distance");
imu = hwMap.get (BNOO55IMU.class, "imu");

BNOO55IMU. Parameters params = new BNOO55IMU. Parameters() ;

// change to default set of parameters go here

imu.initialize(params);

public boolean isTouchSensorPressed() {

return !touchSensor.getState();

public void setMotorSpeed(double speed) {

motor.setPower(speed) ;

public double getMotorRotations() {

return motor.getCurrentPosition() / ticksPerRotation;

public void setServoPosition(double position) {

158

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

© ® N O g ok W N

—_ =
- O

C.14. Chapter 14 Solutions

servo.setPosition(position);

public double getPotAngle() {
return Range.scale(pot.getVoltage(), 0, pot.getMaxVoltage(), 0, 270);

public int getAmountRed() {
return colorSensor.red();

public double getDistance(DistanceUnit du) {
return distanceSensor.getDistance(du) ;

public double getHeading(AngleUnit angleUnit) {
Orientation angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
AxesOrder.ZYX,
angleUnit);
return angles.firstAngle;

public ArrayList<TestItem> getTests() {
ArrayList<TestItem> tests = new ArrayList<>();
tests.add(new TestMotor("PB Motor", 0.5, motor));
tests.add(new TestAnalogInput("PB Pot", pot, 0, 270));
tests.add(new TestDigitalChannel_14_1("PB Touch", touchSensor));

return tests;

Listing C.38: TestServo_14_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.Servo;

import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.mechanisms.TestItem;

public class TestServo_14_2 extends TestItem {

private Servo servo;
double onValue;
double offVvalue;

159

12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 0 N O g oW N =

T T T T S T
2O DB -~ O © ® N O O & D —~ O

C. Sample Solutions

public TestServo_14_2(String description, Servo servo, double offvValue, double <

— onvValue) {
super(description);

this.servo =

Servo;

this.onvalue = onvValue;
this.offvalue = offvalue;

@Override
public void run(boolean on, Telemetry telemetry) {

if

(on) {

servo.setPosition(onvalue);
} else {
servo.setPosition(offvalue);

Listing C.39: ProgrammingBoard 14 2.java

package org.firstinspires.ftc.teamcode.solutions;

import
import

public

160

com.
com.
com.
com.
com.
com.
com.
com.
com.

org.
org.
org.
org.
org.

org

org.
org.

qualcomm. hardware.bosch.BNO0O55IMU;

qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.

firstinspires.ftc.
firstinspires.ftc.
firstinspires.ftc.
firstinspires.ftc.
firstinspires.ftc.

firstinspires.ftc.
firstinspires.ftc.

robotcore.hardware
robotcore.hardware
robotcore.hardware
robotcore.hardware
robotcore.hardware
robotcore.hardware

robotcore.hardware.

.DcMotor;
.DigitalChannel;

Servo;

robotcore.util.Range;

.firstinspires.ftc.

java.util.ArrayList;

robotcore.
robotcore.
robotcore.
robotcore.
robotcore.

external.
external.
external.
external.
external.

.AnalogInput;
.ColorSensor;

.DistanceSensor;
.HardwareMap;

navigation.AngleUnit;
navigation.AxesOrder;
navigation.AxesReference;
navigation.DistanceUnit;
navigation.Orientation;

teamcode.mechanisms.TestAnalogInput;

teamcode.mechanisms.TestItem;

teamcode.mechanisms.TestMotor;

class ProgrammingBoard_14_2 {

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

C.14. Chapter 14 Solutions

private DigitalChannel touchSensor;
private DcMotor motor;

private double ticksPerRotation;
private Servo servo;

private AnalogInput pot;

private ColorSensor colorSensor;
private DistanceSensor distanceSensor;
private BNOO55IMU imu;

public void init(HardwareMap hwMap) {

touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");

touchSensor. setMode(DigitalChannel.Mode. INPUT) ;

motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");

pot = hwMap.get(AnalogInput.class, "pot");

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get(DistanceSensor.class, "sensor_color_distance");

imu = hwMap.get(BNOO55IMU.class, "imu");

BNOO55IMU. Parameters params = new BNOO55IMU.Parameters();
// change to default set of parameters go here
imu.initialize(params);

public boolean isTouchSensorPressed() {
return !touchSensor.getState();

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

public void setServoPosition(double position) {
servo.setPosition(position);

public double getPotAngle() {

return Range.scale(pot.getvVoltage(), 0, pot.getMaxVoltage(), 0, 270);

161

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

© ® N o g W N =

e T S B
@ Gk W D = O

C. Sample Solutions

public int getAmountRed() {
return colorSensor.red();

public double getDistance(DistanceUnit du) {
return distanceSensor.getDistance(du) ;

public double getHeading(AngleUnit angleUnit) {
Orientation angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
AxesOrder.ZYX,
angleUnit);
return angles.firstAngle;

public ArrayList<TestItem> getTests() {
ArrayList<TestItem> tests = new ArrayList<>();
tests.add(new TestMotor("PB Motor", 0.5, motor));
tests.add(new TestAnalogInput("PB Pot", pot, 0, 270));
tests.add(new TestDigitalChannel_14_1("PB Touch", touchSensor));
tests.add(new TestServo_14_2("PB Servo", servo, 0.0, 1.0));

return tests;

Listing C.40: ProgrammingBoard_14_3_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoard_14_3_1 {
DigitalChannel touchSensor;

public void init(HardwareMap hwMap) {

touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor.setMode(DigitalChannel.Mode. INPUT) ;

public boolean getTouchSensorState() {
return touchSensor.getState();

162

—

N O g WwN

© 0 N O gk W N =

e e T e
® N O g oA W N = O

© 0 N O Uk W N =

—
(=]

C.14. Chapter 14 Solutions

Listing C.41: programmingBoard_14_3_2.java

package org.firstinspires.ftc.teamcode.solutions;

public class ProgrammingBoard_14_3_2 extends ProgrammingBoard_14_3_1 {
public boolean isTouchSensorPressed() {
return !touchSensor.getState();

Listing C.42: ProgrammingBoard_14_3_3.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.HardwareMap;

public class ProgrammingBoard_14_3_3 extends ProgrammingBoard_14_3_2 {
protected DcMotor motor;

public void init(HardwareMap hwMap) {
super. init(hwMap) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;

public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

Listing C.43: ProgrammingBoard_14_3_4.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.HardwareMap;

lic class ProgrammingBoard 14 3 4 extends ProgrammingBoard 14 3 3
g g g g
private double ticksPerRotation;

public void init(HardwareMap hwMap) {

super. init(hwMap) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();

163

11
12
13
14
15
16

© 0 N O gk W N =

e e e e
N o g o~ W N~ O

© ® N o g W N =

e T S B
@ Gk W D = O

C. Sample Solutions

public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

Listing C.44: programmingBoard_14_3_5.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

public class ProgrammingBoard_14_3_5 extends ProgrammingBoard_14_3_4 {
protected Servo servo;

public void init(HardwareMap hwMap) {
super. init(hwMap) ;
servo = hwMap.get(Servo.class, "servo");

public void setServoPosition(double position) {
servo.setPosition(position);

Listing C.45: programmingBoard_14_3_6.java

package org.firstinspires.ftc.teamcode.solutions;
import com.qualcomm.robotcore.hardware.AnalogInput;
import com.qualcomm.robotcore.hardware.HardwareMap;

import com.qualcomm.robotcore.util.Range;

public class ProgrammingBoard_14_3_6 extends ProgrammingBoard_14_3_5 {
protected AnaloglInput pot;

public void init(HardwareMap hwMap) {
pot = hwMap.get(AnalogInput.class, "pot");
public double getPotAngle() {

return Range.scale(pot.getVoltage(), 0, pot.getMaxvVoltage(), O,

164

270);

© 0 N O gk W N =

NN N NN = e e e e e e e e
D Ok W N = O O N U W N = O

© ® N O g ok W N =

—_ =
N o~ O

C.14. Chapter 14 Solutions

Listing C.46: programmingBoard_14_3_7.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.HardwareMap;

import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;

public class ProgrammingBoard_14_3_7 extends ProgrammingBoard_14_3_6 {
protected ColorSensor colorSensor;
protected DistanceSensor distanceSensor;

public void init(HardwareMap hwMap) {
super. init(hwMap) ;
colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get(DistanceSensor.class, "sensor_color_distance");

public int getAmountRed() {
return colorSensor.red();

public double getDistance(DistanceUnit du) {
return distanceSensor. getDistance(du) ;

Listing C.47: programmingBoard_14_3_8.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.hardware.bosch.BNO055IMU;
import com.qualcomm.robotcore.hardware.HardwareMap;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder;
import org.firstinspires.ftc.robotcore.external.navigation. AxesReference;
import org.firstinspires.ftc.robotcore.external.navigation.Orientation;

public class ProgrammingBoard_14_3_8 extends ProgrammingBoard_14_3_7 {
private BNOO55IMU imu;

165

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

© 0 N O Uk W N =

e T T S B
@ G W D = O

1
2

C. Sample Solutions

public void init(HardwareMap hwMap) {
super. init(hwMap) ;

imu = hwMap.get (BNOO55IMU.class, "imu");

BNOO55IMU. Parameters params = new BNOO55IMU.Parameters() ;
// change to default set of parameters go here
imu.initialize(params);

public double getHeading(AngleUnit angleUnit) {
Orientation angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
AxesOrder.ZYX,
angleUnit);
return angles.firstAngle;

Listing C.48: ProgrammingBoard_14_3_9.java

package org.firstinspires.ftc.teamcode.solutions;

import org.firstinspires.ftc.teamcode.mechanisms.TestAnalogInput;
import org.firstinspires.ftc.teamcode.mechanisms.TestItem;
import org.firstinspires.ftc.teamcode.mechanisms.TestMotor;

import java.util.ArrayList;

public class ProgrammingBoard_14_3_9 extends ProgrammingBoard_14_3_8 {
public ArrayList<TestItem> getTests() {
ArrayList<TestItem> tests = new ArrayList<>();
tests.add(new TestMotor("PB Motor", 0.5, motor));
tests.add(new TestAnalogInput("PB Pot", pot, 0, 270));
return tests;

C.15. Chapter 15 Solutions

Listing C.49: ProgrammingBoard 15_1.java

package org.firstinspires.ftc.teamcode.solutions;

166

© ® N o g ok W

C.15. Chapter 15 Solutions

import com.qualcomm.hardware.bosch.BNO055IMU;

import com.qualcomm.robotcore.hardware.AnalogInput;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.util.Range;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AxesOrder;
import org.firstinspires.ftc.robotcore.external.navigation. AxesReference;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.robotcore.external.navigation.Orientation;
import org.firstinspires.ftc.teamcode.mechanisms.TestAnalogInput;

import org.firstinspires.ftc.teamcode.mechanisms.TestItem;

import org.firstinspires.ftc.teamcode.mechanisms.TestMotor;

import java.util.ArrayList;

public class ProgrammingBoard_15_1 {

private DigitalChannel touchSensor;
private DcMotor motor;

private double ticksPerRotation;
private Servo servo;

private AnalogInput pot;

private ColorSensor colorSensor;
private DistanceSensor distanceSensor;
private BNOO55IMU imu;

/**
*

This initializes our programming board and gets it ready for use.
* It MUST be called before any of the other methods

*

*

@param hwMap the hardware map from the opMode

*/
public void init(HardwareMap hwMap) {
touchSensor = hwMap.get(DigitalChannel.class, "touch_sensor");
touchSensor. setMode(DigitalChannel.Mode. INPUT) ;
motor = hwMap.get(DcMotor.class, "motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER) ;
ticksPerRotation = motor.getMotorType() .getTicksPerRev();
servo = hwMap.get(Servo.class, "servo");
pot = hwMap.get(AnalogInput.class, "pot");

167

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

C. Sample Solutions

colorSensor = hwMap.get(ColorSensor.class, "sensor_color_distance");
distanceSensor = hwMap.get(DistanceSensor.class, "sensor_color_distance");

imu = hwMap.get (BNOO55IMU.class, "imu");

BNOO55IMU. Parameters params = new BNOO55IMU. Parameters() ;
// change to default set of parameters go here
imu.initialize(params);

Var
* @return whether the touch sensor is pressed or not
*/

public boolean isTouchSensorPressed() {

return !touchSensor.getState();

/ * ok
*/
public void setMotorSpeed(double speed) {
motor.setPower(speed) ;

yar
* @return returns the number of rotations from the encoder
*/
public double getMotorRotations() {
return motor.getCurrentPosition() / ticksPerRotation;

Var
* @param position the position (0.0-1.0) for the servo
*/

public void setServoPosition(double position) {

servo.setPosition(position);

/*k

* @return the angle (0 - 270) the potentiometer is pointed to
*/

public double getPotAngle() {

return Range.scale(pot.getVoltage(), 0, pot.getMaxVoltage(), 0, 270);

/*;r

168

@param speed the speed (-1.0 to 1.0) where negative is backwards

C.15. Chapter 15 Solutions

93 * @return the amount red (0-255) the color sensor sees
94 */

95

96 public int getAmountRed() {

97 return colorSensor.red();

98 }

99

100 Vi

101 * @param du what units to return distance in

102 * @return distance seen by distance sensor

103 */

104

105 public double getDistance(DistanceUnit du) {

106 return distanceSensor. getDistance(du) ;

107 }

108

109 Vi

110 * @param angleUnit what units to return the angle in
111 * @return the heading (Z axis of the IMU)

112 */

113 public double getHeading(AngleUnit angleUnit) {

114 Orientation angles = imu.getAngularOrientation(AxesReference. INTRINSIC,
115 AxesOrder.ZYX,

116 angleUnit);

117 return angles.firstAngle;

118 }

119

120 Vi

121 * @return a list of tests for the hardware on the board - used by TestWiring
122 */

123

124 public ArrayList<TestItem> getTests() {

125 ArrayList<TestItem> tests = new ArrayList<>();

126 tests.add(new TestMotor("PB Motor", 0.5, motor));
127 tests.add(new TestAnalogInput("PB Pot", pot, 0, 270));
128 return tests;

129 }

130 |}

Listing C.50: TestMotor_15_2.java

—

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.hardware.DcMotor;

~w N

169

© 0 N O ua

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

C. Sample Solutions

import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.mechanisms.TestItem;

public class TestMotor_15_2 extends TestItem {
private double speed;
private DcMotor motor;

/**
* @param description what to show for the name of this test
* @param speed the speed that "on" should run the motor at
* @param motor the motor to test
*/

public TestMotor_15_2(String description, double speed, DcMotor motor) {
super(description);
this.speed = speed;
this.motor = motor;

/**
* Runs the motor test and reports encoder values to telemetry

*

* @param on whether to run the motor or stop the motor
* @param telemetry where to put the encoder results
*/
@Override
public void run(boolean on, Telemetry telemetry) {
if (on) {
motor.setPower(speed) ;
} else {
motor.setPower(0.0);
}

telemetry.addData("Encoder:", motor.getCurrentPosition());

C.16. Chapter 16 Solutions

Listing C.51: Exercise_16_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;

170

© 0 N o g b

11
12
13
14
15
16
17
18
19
20
21
22

© 0 N O gk W N =

e e e e e
® N O g oA~ W N = O

C.17. Chapter 17 Solutions

import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

@TeleOp()
public class Exercise_16_1 extends OpMode {
boolean wasA;

@Override
public void init() {
telemetry.speak("Initialized");

@Override
public void loop() {
if (gamepadl.a && !wasA) {
telemetry.speak("A button pressed");
}

wasA = gamepadl.a;

C.17. Chapter 17 Solutions

Listing C.52: Exercise_17_1.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;

import org.firstinspires.ftc.teamcode.Polar;

@TeleOp()

public class Exercise_17_1 extends OpMode {
@Override
public void init() {

@Override
public void loop() {
Polar leftStick = new Polar(gamepadl.left_stick_x,

-gamepadl.left_stick_y);

171

19

20
21
22
23
24

© ® N o g W N -

P e e e e e e e
© ® N O g o W D = O

20
21
22
23
24

C. Sample Solutions

Polar rightStick = new Polar(gamepadl.right_stick_x, -gamepadl.right_stick_y)<>
—

telemetry.addData("Left", "%f", leftStick.getAngle(AngleUnit.DEGREES));
telemetry.addData("Right", "%f", rightStick.getAngle(AngleUnit.DEGREES)) ;

Listing C.53: Exercise_17_2.java

package org.firstinspires.ftc.teamcode.solutions;

import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.Polar;

@TeleOp()

public class Exercise_17_2 extends OpMode {
@Override
public void init() {

@Override
public void loop() {
Polar leftStick = new Polar(gamepadl.left_stick_x, -gamepadl.left_stick_y);
Polar rightStick = new Polar(gamepadl.right_stick_x, -gamepadl.right_stick_y)<>
—

telemetry.addData("Left", "%+.0f", leftStick.getAngle(AngleUnit.DEGREES)) ;
telemetry.addData("Right", "%+.0f", rightStick.getAngle(AngleUnit.DEGREES)) ;

172

D. Credits

Thanks to the following people that provided feedback on earlier versions of
the book to make it better. If you have comments, please put them in at
https://github.com/alan412/LearnJavaForFTC/issues/new/choose

e Karen (FTC #18175 - Team Techies)

¢ Joshua

Eli (FTC #8569 - RoboKnights)

Teja (FTC #16072 - Quantum Quacks)

Dan (FTC #10273 - The Cat in the Hat Comes Back)

Abigail (alumnae of FRC #3459 - Team PyroTech)

Ellie (FTC #8569 - RoboKnights)

Ryan (FTC #16072 - Quantum Quacks)

Burton (FTC #11214 - Ground Shakers)

173

https://github.com/alan412/LearnJavaForFTC/issues/new/choose

	Introduction
	Hardware
	Robot Controller
	Programming Board
	Driver Station

	Our first OpMode
	Some terminology
	What is an OpMode?
	Parts of an OpMode
	Hello, World

	Now you try
	Comments
	Sending to the Robot Controller
	Gotchas
	Exercises

	Variables and Data Types
	Primitive Data Types
	String
	Scope
	Exercises

	Gamepad and basic math
	Basic Math
	Other assignment operators
	Exercises

	Making decisions
	If
	Else
	Else if

	Combinations
	While
	For
	Exercises

	Class Members and Methods
	Members
	Class Methods
	Return Types
	Parameters
	Special Methods: Constructors
	Another special method: toString

	Controlling access- Keep your private things private
	Creating your own classes
	static
	Exercises

	Our first hardware
	Configuration file
	Mechanisms
	OpMode
	Making changes
	Exercises

	Motors
	Editing Configuration File
	Mechanisms
	OpMode
	Motor as Sensor
	Motors and Sensors together
	Motors and Gamepads
	Exercises

	Servos
	Configuration File
	Mechanisms
	OpMode
	Exercises

	Analog Sensors
	Configuration File
	Mechanisms
	OpMode
	Exercises

	Color and Distance Sensors
	Configuration File
	Mechanisms
	OpMode
	Exercises

	Gyro (IMU)
	Configuration File
	Mechanisms
	OpMode
	Exercises

	Dealing with State
	A simple example
	Autonomous state - Example
	Using the switch statement
	Switch with strings
	Enumerated types

	It's all relative
	Exercises

	Arrays
	ArrayList
	Making your own generic class

	Exercises

	Inheritance
	Isa vs. hasa
	So why in the world would you use this?
	Exercises

	Javadoc
	Exercises

	Finding things in FTC SDK
	Exercise

	A few other topics
	Make telemetry prettier
	Math class
	Interfaces (implements)
	When to use an interface instead of an abstract class?

	final
	Exercises

	Making your own Programming Board
	LinearOpMode
	What is it?
	Should you use it?
	Benefits of LinearOpMode
	Drawbacks of LinearOpMode

	Sample Solutions
	Chapter 1 Solutions
	Chapter 2 Solutions
	Chapter 3 Solutions
	Chapter 4 Solutions
	Chapter 5 Solutions
	Chapter 6 Solutions
	Chapter 7 Solutions
	Chapter 8 Solutions
	Chapter 9 Solutions
	Chapter 10 Solutions
	Chapter 11 Solutions
	Chapter 12 Solutions
	Chapter 13 Solutions
	Chapter 14 Solutions
	Chapter 15 Solutions
	Chapter 16 Solutions
	Chapter 17 Solutions

	Credits

